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Abstract

This work thesis present a contribution to the modeling and understanding of filled silicone

rubber and soft tissues. Rubber like materials parts are designed using finite element code

in which more and more precise and robust constitutive equations are implemented. In

general, constitutive equations developed in literature to represent the anisotropy induced

by the Mullins effect present analytical forms that are not adapted to finite element imple-

mentation. The present paper deals with the development of a constitutive equation that

represents the anisotropy of the Mullins effect using only strain invariants. The efficiency

of the modeling is first compared to classical homogeneous experimental tests on a filled

silicone rubber. Second, the model is tested on a complex structure. In this aim, a silicone

holey plate is molded and tested in tension, its local strain fields are evaluated by means of

digital image correlation. The experimental results are compared to the simulations from

the constitutive equation implemented in a finite element code. Global measurements (i.e.

force and displacement) and local strain fields are successfully compared to experimental

measurements to validate the model.

Many rubber like materials present a phenomenon known as Mullins effect. It is

characterized by a difference of behavior between the first and second loadings and by

a permanent set after a first loading. Moreover, this phenomenon induces anisotropy in

an intially isotropic material. A new constitutive equation is proposed in this paper. It

relies on the decomposition of the macromolecular network into two parts: chains related

together and chains related to fillers. The first part is modeled by a simple hyperelastic

constitutive equation whereas the second one is described by an evolution function intro-

duced in the hyperelastic strain energy. It contributes to describe both the anisotropic

stress softening and the permanent set. The model is finally extended to soft tissues

mechanical behavior that present also stress softening but with an initially anisotropic

behavior. The two models are successfully fitted and compared to experimental data.

In this paper, an extension of two classical viscoelastic models adapted in large defor-

mation for incompressible rubber like materials or soft tissues is proposed. These models

are built by using a three dimensional homogeneization by means of a sphere unit ap-

proach. Thus several comparisons between classical formulations and homogeneization

on a sphere unit formulation is proposed. An adaptation of those models to describe
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anisotropy is proposed. Finally an extension of those models to take into account stress

softening is described.

The main objective of this study is to generate anisotropic membranes stretched in

their plane able to endure large deformations. In this perspective, different crenellated

membranes were designed with a filled silicone rubber. The aim of this work is to build

a constitutive equation which describes the mechanical behavior of such architectured

membranes, by means of a simple decompostion of the strain energy.

Since a filled silicone is used to make the architectured membrane, some non linear effects

influence also the mechanical behavior of the structure. The main phenomenon is the

Mullins effect and must be taken into account in the modeling. An equivalent constitutive

equation is built for the architectured membrane by taking into account the mechanical

behavior of the silicone and the geometrical parameters of the crenellated membrane.

Firstly, a constitutive equation is chosen to describe the core of the membrane. Second, this

equation is adapted to the behavior of the crenels and thirdly a coupling term describing

the interactions between the crenels and the core of the membrane is developed. The

implementation of the equivalent constitutive equation into a finite element code is finally

validated on experimental data.

Key words: Filled silicone, Mullins effect, permanent set, viscoelasticity, architec-

tured materials,finite element implementation
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General introduction

The context

This thesis work, was realized thanks to a ministerial grant aid at the TIMC-IMAG

"Techniques de l’Ingénierie Médicale et de la Complexité - Informatique, Mathématiques

et Applications, Grenoble" (TIMC-IMAG) laboratory. It took place in the "Biomedical and

Mechanical engineering of Materials" (BioMMat) team, where the main area of research

is the study of living materials and materials that present biomedical applications (NiTi

shape memory alloys and rubber like materials). In this context, this thesis work focuses

on soft materials, and in particular on rubber like materials.

The objectives

The development of new prosthesis or scaffolds is a current challenge. To mimic the living

soft materials, most of these implants are made of biocompatible rubber like materials as

the silicone. If the mechanical behavior of these materials is well known and predicted,

the prosthesis design becomes more efficient. In this way, this thesis work aims to propose

new constitutive equations that can take into account the non linear phenomena that are

observed in soft materials submitted to large deformations. To that aim experimental,

theoretical and numerical studies are lead on rubber like materials. In this research field,

researchers currently start on rubber like materials before to extend the in-house knowl-

edge to soft tissues. Firstly the use of different rubber like materials allows to isolate

each phenomenon and to build robust models before using it on living materials. Indeed

it enables to take into account stress softening, induced anisotropy, permanent set and

viscous effects in models.

Moreover, having a good set of experimental data on rubber like materials is easier. On

the opposite, the experimental data on soft tissues are more difficult to set up and the

number of samples is often limited. Thus, the non linear phenomena are more difficult to

be properly quantified. Besides, due to the presence of fibers in their structure inducing

an initial anisotropy soft tissues present rarely an isotropic behavior. In order to have
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this other non-linear phenomenon considered it is proposed to use architecture rubber like

materials.

The scientific content

To reach the aims of this thesis, the work can be divided in several parts. In this way,

each chapter focuses on an objective.

The first section presents the rubber like materials and the soft tissues. A description of

their structure is proposed, and first similarities are highlighted. Both materials are sub-

mitted to large deformations and cyclic loadings. Simple mechanical tests are performed

on the materials and compared to classical literature observations. Both materials present

a similar mechanical behavior and several non linear phenomena such as: stress softening,

permanent set and viscoelasticity. The major difference between the both materials is

that most of the soft tissues present an initially anisotropic behavior compared to rubber

like materials. In this way, the main basis equation of a hyperelasticity framework are

recalled, and the main modeling theories (micro mechanics based models or phenomeno-

logical models) are presented. Then a quick bibliography of the preexistent models is

proposed. Finally, architectured materials are presented, first according to the soft tissues

that are naturally considered as architectured due to their microstructure and then by

means of geometrical assumption or by means of composites.

The Chapter 2 focuses on two dependent non linear phenomena: stress softening and in-

duced anisotropy. To isolate these two phenomena, a filled silicone rubber (RTV3428) is

used. Indeed, this material does not present permanent set or viscous effect at slow and

moderate strain rates. Moreover, this material presents an initially isotropic behavior.

The chapter presents an experimental study with classical mechanical tests and tensile

tests according to different orientations to highlight the influence of the loading direction.

Then a new model based on a micro spherical approach is proposed and validated on the

experimental data. A numerical implementation of the model is also proposed to test the

robustness of the model.

In Chapter 3, another non linear phenomenon is added to the previous proposed model

: the permanent set. To validate the model experimental data are performed on a Hot

Temperature Vulcanization (HTV) filled rubber that presents stress softening, induced

anisotropy and permanent set. Then the model is extended to soft tissues and adapted to

take into account the initial anisotropy of material.

Chapter 4 focuses on the viscoelasticity of the rubber like materials. In this way, a first

part, presents a theoretical study to take into account the viscoelastic behavior of ma-

terials based on two main theories. Classical models of the literature are adapted to a

microspherical approach and comparisons with classical formulations are proposed. The

second section of this chapter proposes a comparison of several models extend to micro-

spherical approach to experimental data performed on a Nitril Butadien Rubber (NBR).

Stress softening, induced anisotropy and viscoelasticity are thus taken into account.

Finally, the chapter 5 presents two kinds of architectured materials. A geometrical ar-

chitectured material made of filled silicone rubber RTV3428 and two microstructural ar-

chitectured materials made of Thermoplastic Elastomer (TPE) or of filled silicone rubber

2



RTV3428 with preferential orientations of chains impose during the process. The mi-

crostructure of those material can be partially controlled to induce an initial anisotropy

to the materials. In this way, all the non linear phenomena observed experimentally in

the first section are taken into account in a model. All parts of the previous models are

regrouped to take into account the global behavior of soft materials with initial isotropy

in large deformation.
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1.1 Introduction

This thesis work focuses on the mechanical behavior of materials submitted to large de-

formations. All materials have different structures and thus a particular mechanical be-

havior that defines its functions and its applications. Large deformations are observed on
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structural materials which are made of huge molecular arrangement, and they are called

macromolecules for polymers. They are made up of many small, simple chemical units,

joined together, they can exists naturally or being synthetically created. Among all the

polymers, this study focus more precisely on rubber like materials. A second group of

materials that can endured large deformations and that is made of long molecules are

the soft tissues. They are composed of collagen fibers that confer them their mechanical

behavior. Collagen are very long structural proteins often considered as fibers, when they

are joined, and that award a mechanical resistance to the tissue. Rubber like materials and

soft tissues present a lot of similarities that are highlighted throughout this bibliography

and in the following chapters.

The aim of this chapter is to present both materials and their mechanical behavior in

the view to build an efficient predictive model. Indeed, even if rubber like materials are

widely used in many industrial applications their prediction is still an open issue. First, a

brief description of the rubbers like materials and soft tissues is proposed. Then, simple

mechanical tests are performed to highlight the mechanical behavior and the non linear

phenomena associated to both materials. Similarities between both materials are pointed

by means of the experimental observations. Then the basis of constitutive equations to

represent the material behavior are recalled. Finally, a quick bibliography of the proposed

models in literature to take into account the phenomena is presented.

1.2 Rubber like materials and soft tissues

1.2.1 Composition of the rubber like materials and Network

Rubber like materials are widely used in industrial applications such as car, aeronautics

or civil engineering. More and more industries get interest into a better understanding

and modeling of the mechanical behavior of such materials. The Natural Rubber (NR) is

one of the most important elastomer used in the industry. It is extracted from the Hévéa

Brasilien tree, which is principally cultivated in Asia and Africa. Since the second World

War, the synthetic rubbers have been developed, thus many industrial applications use

also synthetic ones as Styrene Butadien Rubber (SBR), Nitrile Butadiene Rubber (NBR)

or Ethylene Propylene Diene Monomer (EPDM) for example. Even if the composition

of synthetic elastomer and NR are different, the structure is similar. Indeed, polymers

materials are composed of a particular atomic group that can be denoted as (A), this basic

unit is called structural unit or monomer unit. These units are repeated many times and

take the form (A-A-A-A-) to create a macromolecule. The numbers of unit in a sequence

defined the degree of polymerization, usually a material is called a polymer for a degree

superior at 100 units. Different monomers can exist in a same structure, in this case

the obtained macromolecule is a copolymer. All the materials used in this work contain

fillers, that means that monomer chains are also linked to fillers, and that the mechanical

behavior is different from an unfilled rubber [Mullins, 1948; Rigbi, 1980]. Most of the

rubber like materials are organic compound, the macromolecule is made of carbonated

chain, nevertheless some are inorganic. For instance, for the silicone, which is mainly used

in this thesis work, the macromolecule is made of Silicon-Oxygen (Si-O) chain. Even if
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their composition is different these materials present still a similar mechanical behavior.

A basic representation of these material is represented in Fig.1.1, where it is considering

that chains can be linked either to other chains either to fillers.

Figure 1.1: Representation of filled rubber like material with chains linked to chains and
chains linked to fillers. [Machado, 2011]

1.2.2 Description of soft tissues

Soft tissues are composed of several layers, each one of these layers have different compo-

sitions. It is considered that there exists four typical tissues: epithelial tissue, connective

tissue, muscular tissue and neuronal tissue [Marieb and Hoehn, 2010]. For the mechanical

studies on soft tissues the connective tissues are often considered as the most important

from a mechanical point of view [Epstein and Munderloh, 1975; Marieb and Hoehn, 2010;

Natali et al., 2009]. They are composed of cells and of extra cellular matrix. The extra

cellular matrix is composed of ground substance and of three types of fibers: collagen,

reticular and elastic fibers. Collagen fibers are much important than other particularly

because of their large size and represent most of the mechanical behavior. The reticular

fibers, which are thin collagen fibers with different chemical properties, allow to create

ramifications with the collagen fibers. Finally the elastic fibers mainly composed of elastin

present a purely elastic behavior and are also linked to the collagen fibers. The elastic

properties of a soft tissues are mainly due to these fibers.

For instance, Fig.1.2 represents an arterial wall made of three layers. The intima consists

of a single layer of endothelial cells, this layer is very thin for a healthy subject and its

contribution to the mechanical behavior can be neglected. Then the media, which is a

connective tissue, is a complex three-dimensional network of smooth muscle cells, elastin

and oriented collagen fibrils form helix. This structure rearrangement is very important

from a mechanical point of view. Finally, the last layer of the arterial wall is the adven-

tia, composed of cells that product collagen and elastin. Collagen fibrils, that regroup to

create collagen fibers, are also arranged in helical structure. This layer is mechanically

important for high pressure [Holzapfel et al., 2000]. For a more detailed review of mechan-

ical characteristic of arterial component see for example [Rhodin, 1980; Silver F.H. and

Buntin, 1989]

Other tissues, as esophageal [Natali et al., 2009] are composed of several layers: mucosa,

submucosa, muscularis externa and adventia as represented in Fig1.3. As for the arteries,

these layers present all a different function and a different mechanical behavior. The ad-
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Figure 1.2: Representation of an arterial wall, Holzapfel et al. [2000]

ventia is similar to the one of the arterial wall, the mucosa is mostly composed of epithelial

cells and the muscularis externa of muscle cells. For oesophageal tissues the submucosa

(connective tissue) is the layer that presents the most mechanical resistance due to very

high number of collagen fibrils that regroup into thick fibers. The fibers are also arranged

according to a helix and two main directions of fibers can be defined. It is important

to note that there exist different types of collagen, some are more resistant than other,

according to the type of collagen presents in the studied tissue. For instance collagen is

also present in cartilage and bones [Lakes, 1993].

Only two types of soft tissues have been presented, but the composition is similar for many

other tissues. In the following parts, the structure of soft tissue will be simplified, thus

it is considering that a soft tissue can be represented only by collagen fibers that allow

a reinforcement of the structure in a matrix. The orientation of the fibers in the matrix

induces an initial anisotropy.
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Figure 1.3: Representation of oesophageal tissue, [Natali et al., 2009]

1.3 Mechanical behavior: experimental observations

1.3.1 Hyperelasticity and cyclic behavior

Mechanical behavior of soft tissues and rubber like materials present similarities. The

most important, are that the materials are characterized by the ability to endure large de-

formations and present a highly non linear response. Their behaviors are thus represented

by hyperelastic laws. It is proposed in this part to highlight the non linear effects endured

by both materials by means of experimental observations. First, the mechanical behav-

ior of both material is represented when they are submitted to large deformations and

cyclic loadings. The Fig.1.4(a) highlights the mechanical behavior of a Hot Temperature

Vulcanization rubber like material for a cyclic tensile test and the Fig.1.4(b) highlights

the mechanical behavior for two orthogonal samples of aortic porcine arteries submitted

to a cyclic tensile test [Rebouah, 2011]. For both materials, the Cauchy stress endured

is represented in function of the elongation λ, which represents the actual length of the

sample over its initial length. Several phenomena can be observed for both materials: the

stress softening, the permanent set, initial anisotropy and hysteresis. Each one of these

phenomena are more precisely defined in the following sections.

1.3.2 Initial isotropy or anisotropy

A first major information that can be obtained from tensile tests on these materials is

to define if they are initially isotropic or anisotropic. Indeed, the behavior of rubber

like materials depends on their manufactured. For instance, many industrial rubber like

materials present an initially anisotropy due to their manufactured in calendared plate

[Laraba-Abbes, 1998; Robisson, 2000; Diani et al., 2004]. In this section, a Hot Tempera-

ture Vulcanization filled rubber is studied, its process does not induced initially anisotropic

behavior.

However, most of the soft tissues present an initially anisotropic behavior due to the ori-

ented collagen fibers that composed the tissue. Arteries are one of the most studied tissue

and many authors highlighted their initial anisotropy [Holzapfel et al., 2000; Raghavan
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Figure 1.4: Stress-Strain curve of a Hot Temperature Vulcanization (a) and on circumfer-
ential and longitudinal porcine arteries samples (b)

et al., 1996; Zulliger et al., 2004; Vande Geest et al., 2006; Maher et al., 2012], however

many others tissues as oesophagus [Natali et al., 2009], vaginal tissue [Peña et al., 2011],

etc... present also an initial anisotropy. Due to the presence of collagen fibers, it is rare to

find soft tissues that are initially isotropic, excepted for instance for brain tissue [Miller

and Chinzei, 1997; Kaster et al., 2011]. Fig.1.4(b) highlighted the mechanical behavior

for two orthogonal samples of porcine arteries, as show in literature it appears that this

soft tissue presents an initial anisotropy.

1.3.3 Stress softening

The performed cyclic test presented in Fig.1.4 permits to highlight another classical phe-

nomenon observed in rubber like materials and soft tissues: the stress softening. It was

observed for the first time by Bouasse and Carrière [1903] and then strongly studied by

Mullins [1948, 1969] and is now commonly called the Mullins effect. For both material it

appears that there is a stress softening after the first loading. This phenomenon can be

characterized by four main properties:

• The stiffness of a material decreases after the first loading for strain state inferior to

the maximal strain imposed during the first loading.

• The material is not softened for strain state superior to the first loading, indeed once

the material overtake the maximal strain reached during the first loading, the curve

comes back to the primary loading.

• Most of the softening is obtained for the first cycle, it is often considered that after

three or four cycles the mechanical behavior is stabilized.

• After the first cycle and near to the maximal strain reached during the first cycle

the material presents a stress hardening before coming back on the primary curve.

In this thesis work, it is considered that the stress softening occurs between the first and the

second loading. Many authors studied this phenomenon, and the literature is very well
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documented, especially for rubber like material [Gurtin and Francis, 1981; Simo, 1987;

Miehe, 1995; Ogden and Roxburgh, 1999; Chagnon, 2003; Diani et al., 2009; Machado,

2011; Merckel, 2012]. Most of soft tissues present also an important stress softening as

experimentally observed by Alastrué et al. [2008]; Natali et al. [2005]; Calvo et al. [2009];

Peña and Doblaré [2009]; Peña et al. [2011]; Maher et al. [2012].

Another important point is that, many new experimental data are proposed in the litera-

ture to emphasize that the Mullins effect is strongly anisotropic [Muhr et al., 1999; Park

and Hamed, 2000; Pawelski, 2001; Besdo and Ihlemann, 2003; Laraba-Abbes et al., 2003;

Diani et al., 2006a; Hanson et al., 2005; Itskov et al., 2006; Machado et al., 2012b; Dorf-

mann and Pancheri, 2012; Lion et al., 2013; Diani et al., 2006a; Merckel et al., 2013, 2012].

Indeed, successive tensile test according to different orientations highlight that the Mullins

effect induces anisotropy.

1.3.4 Permanent set

According to Fig.1.4(a) for a Hot Temperature Vulcanization filled rubber like material

and Fig.1.4(b) for porcine arteries, it appears that both materials present a permanent

set. Indeed, when a material is submitted to large deformations it is very common to

observe experimentally a residual strain. However this residual strain can be considered

in two different ways. A part that is considering as permanent and that could not be

totally recovered in time. The second part of the residual strain is due to viscous effect

and can be easily recovered in time. The amount of permanent set depends on several

parameters as presented in several studies [Lion, 1996; Dorfmann and Ogden, 2004; Diani

et al., 2009]:

• The amount of fillers in the material for a rubber like materials if a filled rubber like

material is considered. The composition of the connective tissue, the orientation of

collagen fibrils and their type for a soft tissue.

• The maximal strain state reached during the loading for both materials.

• The strain rate applied to the material when it presents viscous effects. More the

strain rate applied is important more the residual strain is important too.

Even if the amount of fillers influence the amount of residual strain, there exists also some

rubber like materials, as for example the Room Temperature Vulcanization 3428 filled

silicone rubbers that presents no residual strain as presented in Fig.1.5. The permanent

set for soft tissue has also been observed experimentally, the damages that the tissues

have endured induce the permanent set observed, most of the observation are similar to

the rubber like materials [Peña, 2011; Maher et al., 2012]. Nevertheless the recovery of

the tissue is most difficult to evaluate since most of the experimental data are lead on ex

vivo samples.

1.3.5 Viscoelastic behavior

After the initial anisotropy, the Mullins effect and the permanent set, one of the last phe-

nomenon observed for rubber like materials and soft tissues is the viscoelasticity. Indeed,
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Figure 1.5: Cyclic stress-strain curve on a RTV3428 filled silicone

the viscoelasticity of a material is characterized by several phenomena. To highlight them

several tests can be carried out. First the Fig.1.6 highlights the viscoelastic behavior of

a NBR submitted to a cyclic tensile test at different strain rates. It appears that the

mechanical behavior of the material is sensitive to the strain rate applied. More the strain

rate is important more the stress state reached is important for a same strain state. In

the same way, it also appears that the viscous effects influence also the permanent set.

For the same imposed loading but at different strain rate the permanent set is different.

More the strain rate is important more the permanent set is important too. The Fig.1.7(b)

represents the same loading on the same material at a strain rate of 0.01s−1. This curve

permits to highlight the viscous effects during cyclic loading. There is an important stress

softening between the first and the second loadings due to the Mullins effect and then

the stress is decreasing for every following cycle due to viscous effects. The Fig.1.7(a)

represents two loading cycles on the same material where relaxation time (30minutes) are

imposed a different strain states. It appears that the stress decreases for each relaxation

time until reached a stabilized stress. These points permit to define "equilibrium curves".

Once again an important stress softening is observed between the first and the second

loading due to Mullins effect and thus equilibrium curves for first and second loadings are

different. It appears that the equilibrium curves are not overlapping it means that this

material presents simultaneously an hysteretic behavior due to viscous effect (well high-

lighted in Fig.1.7(b)) and a permanent hysteretic behavior. The recovery is not completed

in 30 minutes, nevertheless if the recovery time is enough long (several days), the material

should not presented any permanent hysteretic permanent behavior. These experimental

observations have also been tackled in literature as proposed by Tobolsky et al. [1944].
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Figure 1.7: Cyclic loadings with imposed relaxation times of 30 minutes on a NBR at a
strain rate of 0.00025s−1 (a). Cyclic loading on the NBR at a strain state of 0.01s−1 (b)
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Viscoelasticity has also been observed for many soft tissues as iliac arterial segments [Pa-

pageorgiou and Jones, 1988], ligament and tendon [Pioletti et al., 1998], internal organs

Schwenninger et al. [2011], vaginal tissue [Peña et al., 2010].

1.4 Material behavior modeling

This section presents the main points that permit to build a predictive model for both

materials presented in last section. The main equations to respect, the useful tensorial

expressions and the needed tools (the invariants of the deformation) are presented.

1.4.1 Hyperelastic law

As rubber like materials and soft tissues may undergo large deformations and present

highly non linear strain stress responses, it is chosen to use the hyperelastic framework.

All the constitutive equations presented in this work are developed in an incompressible

framework. Models are expressed by means of the strain energy W from which the stress

derives. The deformation gradient F allows describing the deformation of the material

from its initial configuration to its current configuration. The strain energy is often ex-

pressed by means of a the strain tensor, either the right Cauchy Green strain tensor

C = FT F or the left Cauchy Green strain tensor B = FFT .

The stress endured by the material can be defined either on the initial configuration by

means of the second Piola Kirchoff stress tensor S, either on the current configuration by

means of the Cauchy stress tensor σ, or an intermediary configuration by means of the

first Piola Kirchoff stress tensor π. For an incompressible material and according to the

law of thermodynamics, the Clausius Duhem inequality for an isothermal process permits

to deduce the second Piola Kirchoff stress:

S = 2
∂W
∂C

(1.1)

Where p is the hydrostatic pressure. According to the incompressibility assumption the

Cauchy stress can be expressed as:

σ = 2F
∂W
∂C

FT − pI (1.2)

Models are defined by the strain energy used, there exists as much expression of strain

energy as authors working on the subject of the modeling of rubber like materials. Nev-

ertheless two main theories can be distinguished: micro mechanic based model and phe-

nomenological model.

1.4.2 Micro mechanical based models

The micro mechanics based models are built on physical assumptions. Authors described

the mechanical behavior of a macromolecular chain. These models assumed that a strain

energy can be defined for each chain. Indeed the material is considered as a network

constituted of random long molecular chains. According to mechanics statistic, the entropy

of a single chain can be defined by [Mayer and Mayer, 1940] as:

s = klnP (r) (1.3)
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where s is the entropy of a chain, k the Boltzmann’s constant, P the probability of end

to end chain distance and r represents the length of the chain segment. To determine the

density probability two theories are proposed. First a Gaussian theory proposed by Guth

and Mark [1934]:

P (r) =
b3

π
3
2

exp(−b2r2) (1.4)

Where b2 = 3/2Nl2 and N represents inextensible segments of length l. This probability

depends only on the distance end to end of the chains. Treloar [1943] did the hypothesis

that the chains deformed homogeneously in the material and finally deduced a simple

strain energy

W =
1

2
Nkθ(I1 − 3) (1.5)

This is the Neo Hookean model, where θ represents the temperature and I1 is the first

strain invariant (it will be explained in paragraph 1.4.3). Unfortunately, a Gaussian theory

does not allow a good prediction of the mechanical behavior at large deformations.

The second theory, proposed by Kuhn and Grün [1942], define the probability end to

end chain distance as a non Gaussian theory which takes into account the orientation

between the different segment of chains and their maximal extension. At the opposite of

the Gaussian theory the extension of the chains is limited.

lnP (r) = N

[

r

Nl
β + ln

(

β

sinβ

)]

(1.6)

Where β = L−1
[

r√
Nl

]

and L is the Langevin function defined as

L(β) = coth(β) − 1

β
(1.7)

The global strain energy is obtained by summation of all the contribution to be the

full network [Treloar and Riding, 1979]. Wu and Giessen [1993] proposed also a full

network by using a statistical distribution of the chains in every directions of space. Many

models were built according to a specific number of considered chain directions, James and

Guth [1943] proposed the three chains model oriented along the three principal directions

where the density is equal for each directions. Then, Flory [1944] and Treloar [1946]

proposed the four chains model where the four directions that linked the center of a

tetrahedron and its summits are represented by the same density. Arruda and Boyce [1993]

proposed the eight chains model where the density of the chains is equally distributed

along the diagonal of a cube. Also based on micro mechanics, Heinrich and Kaliske [1997]

proposed a model where they considered that a chain could move only into a virtual tube

constitute by the other chains. Thus the chain is confined near its initial position. Later

Miehe et al. [2004]; Göktepe and Miehe [2005]; Miehe and Göktepe [2005] used also the

theory of tube constrained by considering that a single polymer chain in a constrained

environment is defined by two micro-kinematic variables: the stretch of the chain and the

contraction of the cross section of a micro-tube that contains the chain. The probability

used is based on the one proposed by Doi and Edwards [1986]. It is to note that Miehe

et al. [2004]; Göktepe and Miehe [2005]; Miehe and Göktepe [2005] proposed a repartition

of chain in space by using a micro spherical approach. The micro spherical approach
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is a mathematical formulation initially proposed by Bazant and Oh [1986] that used a

repartition of i directions in space to integer a sphere. Many authors used this repartition

to build hyperelastic laws [Diani et al., 2006a; Machado et al., 2012b; Merckel et al., 2013;

Lion et al., 2013], and most of them used a 42 directions repartition. A quarter of the

sphere discretized with 42 directions is represented in Fig.1.8. The Annex 1 presents these

directions and the different weights associated. As any discretization, the approximation

can induce an anisotropy, Gillibert et al. [2010] present a study of this induced anisotropy

according to the number of directions use.

Figure 1.8: Representation of a quarter of the micro sphere with a spatial repartition of
42 directions proposed by Bazant and Oh [1986]

1.4.3 Phenomenological models

1.4.3.1 Isotropy

At the opposite of the micro mechanical based model the phenomenological model are

built without any physical considerations. These models are based on mathematical for-

mulations and depend mainly of the strain invariants.

I1 = trC (1.8)

I2 =
1

2

[

(trC)2 − trC2
]

(1.9)

I3 = detC (1.10)

It is to note that in the incompressible assumption I3 = 1. One of the most used model

has been proposed by Mooney [1940] who proposed a strain energy as a linear function of

the two first invariants:

W = C1(I1 − 3) + C2(I2 − 3) (1.11)
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Where C1 and C2 are material parameters. It is to note that if C2 = 0 this model is

equivalent to the Neo Hookean.

Many others phenomenological models have been proposed, for a review it is proposed

to refer to Charlton et al. [1994]; Seibert and Schöche [2000]; Chagnon [2003]; Vahapoglu

and Karadeniz [2006]. Some comparisons of models are proposed in Boyce and Arruda

[2000]; Marckmann and Verron [2006]. It is to note that phenomenological models can

also be integer according to a micro spherical approach [Machado et al., 2012b; Lion et al.,

2013; Machado et al., 2014]. That means that any non linear spring can be put in a micro

spherical approach and that this approach is note only applied to micro mechanic based

models.

1.4.3.2 Definition of directions

Phenomenological models can also be used to describe initially anisotropic material be-

havior, for instance soft tissues. According to the biological composition of the tissue it is

often considered that there exists two different oriented fibers, anyway, at least, there is

on fiber direction. Let considered a parallel fiber reinforcement in a material. It is consid-

ered that the initial direction is defined by A(i). Due to the deformation of the material,

the orientation of the fiber is evolving in the deformed state. The current orientation is

defined by:

a(i) = FA(i). (1.12)

The introduction of these directions leads to the use of other invariants, able to describe

what happens in direction A(i). Thus for the same direction i the invariants I4 and I5 can

be defined as:

I4
(i) = A(i).CA(i) (1.13)

I5
(i) = A(i).C2A(i) (1.14)

These invariants only depends on one direction but there exists also invariants to take into

account the coupling influence between two different directions of fibers i and j, according

to Spencer [1971], two other invariant can be defined:

I8 =
1

2

(

C : (A(i) ⊗ A(j)) + C : (A(j) ⊗ A(i))
)

(1.15)

I9 = A(i).A(j) (1.16)

1.5 Non linear effects: a short bibliography

This section presents a short bibliography of some preexisting models proposed in the

literature to predict hyperelastic behavior with non linear phenomena exposed in para-

graph 1.3. Models adapted either to rubber like materials either to soft tissues to take

into account the non linear phenomena observed experimentally are presented.

1.5.1 Initial anisotropy

Most of the models that treat initial anisotropy have been developed for soft tissues,

nevertheless a major part of these models have been inspired by rubber like materials.
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In the last few years, the understanding of the mechanical behavior of soft tissues gets

improved [Lanir, 1979, 1983; Fung, 1993; Holzapfel, 2000] and thus the multiplication of

predictive models appear.

A review proposed by Chagnon et al. [2014] presents most of the models used to predict the

mechanical behavior of many types of tissues as for instance: anterior malleolar ligament

[Cheng and Gan, 2008], muscles [Gras et al., 2012], human trachea [Trabelsi et al., 2010],

cornea [Shin et al., 1997], skin [Groves et al., 2013] or gallbladder walls [Li et al., 2013]. Due

to the composition of soft tissues most of them present an initial anisotropy, nevertheless

many authors decide to use isotropic approach considered as efficient for small strain or

when the anisotropy is weak as for liver [Lister et al., 2011], kidney [Hostettler et al., 2010],

balder and rectum [Boubaker et al., 2009], and many others [Parente et al., 2009; Azar

et al., 2001; Li and Kleinstreuer, 2006; Abraham et al., 2011; Kaster et al., 2011].

For anisotropic models, there exists different type of models. First, many authors based

their constitutive equation on "Fung" models. These functions are build by using the

components of the Green-Lagrange strain tensor. It consists in proposing strain energy

densities that are decomposed into the contributions of each component with different

weights. The reader can refer to Tong and Fung [1976]; Fung et al. [1979]; Chuong and

Fung [1983]; Costa et al. [1996]; Choi and Vito [1990]; Humphrey [2002] for instance.

A second class of anisotropic model for soft tissue is the one obtained by the use of strain

invariants. For those models, the directions of the fibers are often taken into account

and the use of the fourth or fifth invariant is current. In this way, the strain energy is

often decomposed into an isotropic part and an anisotropic part, this decomposition is

similar to the one proposed to rubber like materials as proposed by Govindjee and Simo

[1992]. Some models of this type can be found in Triantafyllidis and Abeyaratne [1983];

Peng et al. [2006]; Peña et al. [2009]; Basciano and Kleinstreuer [2009]; Bonet and Burton

[1998]; Merodio and Ogden [2005].

Finally, soft tissue often present an important strain hardening and they are also often

described by means of exponential functions. Those models are very used since they permit

to well describe the stress hardening of soft tissues [Humphrey and Yin, 1987; Weiss et al.,

1996; Pinsky et al., 2005; Holzapfel et al., 2002; Natali et al., 2003; Gasser et al., 2006;

Peña et al., 2010] and many others. Only few models are based on statistical approach,

they are very inspired from the rubber like materials excepted that the micro structure

of the soft tissues are not considered by chains [Bischoff et al., 2002; Raghupathy and

Barocas, 2009].

1.5.2 Stress softening

It is important to model the Mullins effect, as the mechanical behavior of the material can

largely change after a first loading as it depends both on the maximal deformation and

the loading direction. Nevertheless, Mullins effect could be ignored for particular studies,

for instance Lion [1997a]; Rey et al. [2014] analyzed the hysteresis of elastomers during

seconds loadings.

Several phenomena are described in the Mullins effect. First the stress softening is often

considered as an irreversible effect, several studies show that even at room temperature

no recovery was observed [Mullins, 1948; Rigbi, 1980; Hanson et al., 2005]. Then, the
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amount of stress softening depends mainly on the rubber like material studied and of the

amount of fillers that they contain [Mullins and Tobin, 1957; Kluppel and Schramm, 2000;

Dorfmann and Ogden, 2004]. It was experimentally observed that more the rubber like

material contain fillers more it presents important stress softening. At the opposite, Meu-

nier et al. [2008] shows that an unfilled silicone rubber did not present any stress softening

but other authors observed some [Mullins and Tobin, 1957; Harwood and Payne, 1966].

Further details on Mullins effect characterization can be found in the review proposed by

Diani et al. [2009].

The prediction of the Mullins effect is a large subject and many researchers proposed dif-

ferent models for many years. [Bueche, 1960] developed a micro mechanical based model

considering consequent debonding of chains from fillers during the primary loading. He

supposed that chains with different lengths are distributed within the rubber network and

employed statistical mechanics in order to describe the Mullins effect. In the same way

Dannenberg [1974]; Rigbi [1980] developed also models on micro mechanical assumptions

of bonded chains. Govindjee and Simo [1991, 1992] proposed model where the network

is decomposed into an elastic rubber part and a polymer-filler part. Several models of

damage have also been proposed for rubber like material as Gurtin and Francis [1981];

DeSouza Neto et al. [1994]; Simo [1987]; Miehe [1995]; Ogden and Roxburgh [1999]. Nev-

ertheless only a few constitutive equations are implemented into industrial finite element

codes [Miehe, 1995; Miehe and Keck, 2000; Kaliske et al., 2001; Zuñiga and Beatty, 2002a;

Chagnon et al., 2006; Guo et al., 2006; Cantournet et al., 2009; Gracia et al., 2009]. The

induced anisotropy by the Mullins effect has also been taken into account in several arti-

cles most of time by using damage functions or evolution functions that permit to take

into account the history of the material. The only formulation implemented in a finite

element code was proposed by Göktepe and Miehe [2005] who used the approach of Miehe

et al. [2004] introducing a directional damage depending on the energy in the considered

direction. According to this new problematic, recent research based on the use of a micro

spherical approach have been proposed [Machado et al., 2012b; Lion et al., 2013; Diani

et al., 2006a; Merckel et al., 2013].

Soft tissues present also a stress-softening. It was observed for example, for arteries [Vande

Geest et al., 2006; Maher et al., 2012], venas [Alastrué et al., 2008], vaginal tissues [Peña

et al., 2010], oesophageal [Natali et al., 2009] and [Bose and Dorfmann, 2009; Kroon and

Holzapfel, 2008]. Most of these constitutive equations are limited to materials presenting

two reinforced directions. The damage functions are only applied on the fibers.

1.5.3 Permanent set

Experimental observations show that many materials present a permanent set in addition

of the stress softening. This phenomenon is characterized by a residual strain that depends

on the maximal strain reached and of the composition of the material, i.e. the amount

of fillers [Menzel and Steinmann, 2001; Ogden, 2004; Diani et al., 2006a]. The following

section presents a quick review of the authors that take into account this phenomenon.

Dorfmann and Ogden [2004] proposed a model by means of the pseudo-elasticity, which

is an isotropic model able to take into account the stress softening and the permanent set.

This model is one of the most employed and was implemented into a Finite Element code.
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But few models are able to take into account stress softening, permanent set and induced

anisotropy of a material. recently Dargazany and Itskov [2009]; Itskov et al. [2010] also

proposed a model to take into account anisotropic softening and permanent set by means

of a pseudo strain energy. Moreover, Diani et al. [2006a]; Merckel et al. [2013] developed a

tridimensional model describing the permanent set and the stress softening and considered

them as independent phenomena. Rececently, Ayoub et al. [2014] proposed a model that

can also take into account the viscous effect of materials by using an alteration theory on

rubber like materials.

Inspired by the rubber like materials, several authors proposed pseudo elastic models

adapted to soft tissues [Franceschini et al., 2006; Horgan and Saccomandi, 2005]. Micro

structurally based models were proposed for 3D generalization for instance by Alastrué

et al. [2009]. Several authors proposed also phenomenological models to take into account

the stress softening and the permanent set [Maher et al., 2012; Peña et al., 2011; Passera

et al., 2013]. It is to note that for the soft tissues, it is generally considered that the stress

softening and the permanent only occurs in the fibers and not in the matrix.

1.5.4 Viscoelasticity

For the most of rubber like materials, the mechanical behavior depends mainly on the

strain rate, and the response varies from purely rubber like material to glassy polymer

(Yi et al. [2006]; Sarva et al. [2007]).

The viscoelasticity in large deformations is classically described according to two different

theories. The first theory is the one developed by Green and Rivlin [1957] and Coleman

and Noll [1961] by using the principle of Boltzmann superposition. Indeed, Green and

Rivlin [1957] introduced and supposed that relaxation functions depend only on the time

and Coleman and Noll [1961] considered that these functions depend on time and on the

actual state of deformation. These models are expressed in term of convolution integrals

and were readapted by Berstein et al. [1963] and Zapas and Craft [1965] to finally be

known as K-BKZ model for fluids. Later, Ogden [1972] and Christensen [1980] developed

the extensions of Green and Rivlin [1957] at the first order for the solids.

σ = g0B(t) + F(t)

∫ t

0
g1(t − τ)Ė(τ)dτFT (t) − pI (1.17)

Where E = (C−I)/2 is the Green Lagrange deformation tensor, and g0 and g1are material

parameters. All these models are not numerically implemented except for fluid mechanics,

i.e. the K-BKZ model.

The second theory was developed by Green and Tobolsky [1946] by means of differential

models with internal variables. The viscoelasticity is classically build up for uniaxial

formulations with springs and dashpots and generalized to tensorial formulation. The two

standard models used are those of Zenner and Kelvin-Voigt as represented in Fig.1.9. The

readaptation of the differential models, initially proposed by Green and Tobolsky [1946],

was stimulated 40 years later by the work of Lubliner [1985]. This model is based on the

decomposition of the deformation gradient into an elastic part Fe and an inelastic one Fp.

F = FeFp (1.18)
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(a) (b)

Figure 1.9: Rheological representation of the Maxwell model with a spring in parallel (a)
and a Kelvin-Voight model with a spring in serie (b)

Later, several authors [Simo, 1987; Govindjee and Simo, 1992; Holzapfel and Simo, 1996;

Lion, 1996; Kaliske and Rothert, 1998] proposed to separate the response of the material

as the sum of an elastic and an inelastic stress, thus the internal variable is of "stress"

type. Simo [1987] model is equivalent to the K-BKZ model as proved by Reese and

Wriggers [1997], and was implemented in a finite element code. It is to note that the

IVM theory is mainly used due to the facilities of numerical implementation Green and

Tobolsky [1946]; Sidoroff [1974]; Lubliner [1985]. Many authors proposed models of this

type as Huber and Tsakmakis [2000]; Reese and Govindjee [1998]; Lion [1997b]; Amin et al.

[2006] for instance. For all the proposed models, the mechanical behavior is determined

by an evolution equation that is consistent with the second law of thermodynamics. Yet

non linear evolution equations are now often used to represent at the best the mechanical

behavior of the material (Reese and Govindjee [1998]; Holzapfel and Simo [1996]; Miehe

and Keck [2000]; Haupt and Sedlan [2001]; Lion [1996]), in these publications different

internal variables can be used, anyway this choice depend on each author and is validated

as long that the second law is too. Later Amin et al. [2006] proposed an improvement of

Huber and Tsakmakis [2000] by using a non linear evolution equation for the inelastic strain

rate. All these models are phenomenological. Non linear evolution equations were also

proposed for micro mechanical models. The most recognized model is the one proposed by

Bergstrom and Boyce [1998] which is an extension of the 8 Chain models of Arruda and

Boyce [1993]. More recently Miehe and Göktepe [2005] proposed also an micro mechanical

model based on the theory of chains constraints in tube. Furthermore this model is based

on a micro sphere approach, that means that this model is spread out along a spatial

repartition. In the same way Diani et al. [2006b] proposed also a model by using a sphere

unit repartition and based on micro mechanic statistics Langevin function.

Soft tissues present also a strain rate dependency. Models were developed to take into

account the viscoelasticity of soft tissues and the initial anisotropy due to their structure,

see for example (Fung [1993]; Miller and Chinzei [1997]; Pioletti and Rakotomanana [2000];

Miller [2000]; Limbert et al. [2004]; Taylor et al. [2009]; Peña et al. [2008]).

1.6 Controlled anisotropy: Architectured materials

An emerging topic for a few years are architectured materials, they take an increasingly

important place in many applications due to their specificities including mechanical prop-

erties [Bouaziz et al., 2008]. It exists several types of architectured materials. For instance,
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some materials are architectured due to their microstructure (grain size for metallic mate-

rials, polymer chain design or state of crystallization for example). This strategy operates

at scales between 1 nm and 10 µm. The Fig.1.10 illustrates different architectured mate-

rials at different sizes, this figure is issue from Jang et al. [2013]. Architectured materials

Figure 1.10: Different architectured materials [Jang et al., 2013]

can also be composed with an association of several materials, and are called hybrid ma-

terial. These architectured materials are usually used to build multifunctional materials

[Brechet and Embury, 2013; Ashby, 2013; Bouaziz, 2013]. The Fig.1.11 represents for in-

stance a composite material which is also considered as hybrid: a blade. The association

of several materials is often used in industrial applications to improve mechanical proper-

ties. However, natural materials are also very often considered as architectured material,

as presented by Dunlop and Fratzl [2013]. It can be considered that wood, bones, lobster

shell and deep see sponge as illustrated in Fig.1.12 are architectured. Still for the natural

architectured material, the human body is composed of many architectured materials, the

fibrils collagen present in the bones for instance as represented by Lakes [1993] and in

Fig.1.13.

Other materials can be considered as architectured because of their geometry. Meunier

[2011] developed crenellated membranes with an unfilled silicone rubber. The main ad-

vantage of these membranes is that they present an anisotropic behavior without any
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Figure 1.11: Hybrid materials: blade for instance (University of Liverpool)

Figure 1.12: Natural architectured materials [Dunlop and Fratzl, 2013]
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Figure 1.13: Collagen fibrils in bones Lakes [1993]

interface in the material. Indeed, the crenels and their orientations allow to induce and

control the anisotropy. By means of these materials and the use of biocompatible materials

(as silicone), it is now possible to create biomimetic materials.

1.7 Conclusions

This chapter highlights most of the non linear phenomena observed for the rubber like

materials and the soft tissues. Several approach have also been presented to the modeling

of them. A major point of this thesis is to develop new constitutive equations to take into

account all the non linear phenomena observed. In this way, several experimental tests

are performed on different materials. Each one of the material used permit to isolated at

least one of the phenomenon to finally build a model able to take into account all the non

linear phenomena observed in the same time.

In this way all the following chapter focuses on the study of one phenomenon:

• The first material used is a Room Temperature Vulcanizing (RTV) 3428 silicone.

This type of silicone are made from a two component system (base plus curative)

and are issue from industrial fabrication and contain fillers. This material is used

to investigate the Mullins effect at slow strain rate for an initially isotropic material

and does not present residual strain.

• The second material is used to investigate the residual strain of a rubber like material:

a Hot Temperature Vulcanization (HTV). This material is still isotropic but present

a very important stress softening. This behavior become thus closer from those of

soft tissues.

• The viscoelasticity of materials is studied on Nitrile Butadien Rubber (NBR) in an

isotropic framework.
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• Finally, all the phenomena, including initial anisotropy are taken into account, ex-

perimental data are obtained by means of architectured materials, either made of

RTV3428 or with a Thermoplastic Elastomer (TPE).

Many analogies between rubber like materials and soft tissues are done in this thesis work.

Experimental data issues from literature on Ovine Vena Cava are exploited. By means of

the experimental data obtained by means of the different materials, models able to take

into account, Mullins effect, permanent set, initial anisotropy, induced anisotropy and

viscous effect are developed.
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Chapter

2
Anisotropic Mullins effect

Some part of this chapter have been published and can be found in the following reference

• M. Rebouah, G. Machado, G. Chagnon, D. Favier, 2013, Anisotropic Mullins

stress softening of a deformed silicone holey plate, Mech. Res. Commun., 49, 36 -
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2.1 General introduction

This chapter focuses on the modeling of the anisotropic Mullins effect. As explained in

Chapter 1 the Mullins effect is one of the prevailing non linear phenomena observed for

rubber like materials. To study this phenomenon, an isotropic filled silicone is used to

isolate the stress softening and the induced anisotropy phenomena without permanent

set. Several experimental tests were performed and a constitutive equation by means of a

spherical approach is proposed to take into account the Mullins effect. Recently, Machado

et al. [2010, 2012b] developed a large database for a filled silicone rubber including on one

hand cyclic classical experimental tests and on the other hand uniaxial tests performed

after different uniaxial and biaxial tension tests. This database is, used here to build

a new constitutive equation easily implementable in finite element codes. In Section
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2, the constitutive equation is detailed and the ability of the model to describe recent

experimental data is discussed. In Section 3, the numerical implementation of the model

is treated. In Section 4, the ability of the model to describe complex structures is tackled

by means of a specific test on a rectangular plate containing five holes. The global and

local estimations of the model are compared to experimental measures. Finally, Section 5

contains some concluding remarks of the modeling.

2.2 Anisotropic modeling of the Mullins effect

2.2.1 General formulation in strain invariants

Different anisotropic approaches to model Mullins effect were proposed in literature, but

none of them was only expressed in term of strain invariants. Shariff [2006] and Itskov

et al. [2010] took into account three principal damage directions to reproduce a special

behavior in the direction orthogonal to loading. In a more general way, the spatial repar-

tition of Bazant and Oh [1986] was used by many authors to create an anisotropic model.

Diani et al. [2006b] and Dargazany and Itskov [2009] generalized the network evolution

proposed by Marckmann et al. [2002] to an anisotropic approach by taking into account

the maximum elongation in each spatial direction. Later Merckel et al. [2011, 2012] intro-

duced a new framework and proposed a softening anisotropic criterion adapted to complex

loading states.

The stress softening phenomenon has often been associated to the presence of fillers in

the rubber, but Harwood et al. [1965] showed that stress softening can also occur in unfilled

rubbers, even if it is reduced compared to filled rubbers. For silicone rubbers, Meunier

et al. [2008] observed no Mullins effect for an unfilled one, whereas Machado et al. [2010]

observed stress softening for a filled one. As a consequence, it can be considered that

fillers in silicone rubbers are mainly responsible of the Mullins effect. Thus, as proposed

by Govindjee and Simo [1992] the strain energy density W is additively decomposed into

two parts: one that represents the energy density of the chains linked to other chains

Wcc and an other part that represents the energy density of the chains linked to filler

Wcf . The total strain energy density is W = Wcc + Wcf . It is considered that only Wcf

can evolve with the Mullins effect as in Göktepe and Miehe [2005]. As a consequence

Wcc is represented by a classical hyperelastic isotropic energy density and Wcf must be

represented by an anisotropic strain energy that can evolve with the deformation history

of the material. The ideal representation would be to propose a full integration of all

spatial directions as proposed by Wu and Giessen [1993] in hyperleasticity, but it is not

adapted to finite element implementation. A spatial discretization is needed. Forty-two

initial spatial directions, noted A(i), are introduced, these directions are those proposed

by Bazant and Oh [1986]. Therefore, the strain energy density is written as:

W = Wcc(I1, I2) +
n
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ) (2.1)

where I1, I2 are the first and second strain invariants of the right Cauchy-Green strain

tensor C. The strain in each direction (i) is defined by means of I
(i)
4 = A(i).CA(i). ω(i) rep-

resents the weight of each direction and F (i) is the Mullins effect evolution function. The
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initial directions A(i) are transformed in a(i) by a(i) = FA(i), where F is the deformation

gradient.

Classically, in an isotropic approach, the evolution function F (i) would be written

through the strain energy density, but Chagnon et al. [2004] showed that the first invariant

can also be used. In an anisotropic approach, the elongation in each direction is used Diani

et al. [2006b], knowing that the elongation is the square root of the invariant I4. According

to the conclusions of Machado et al. [2012b], it is chosen to describe the stress-softening

function according to I1 and I4
(i). For each direction (i), an evolution function which

depends on three terms F1, F2, F3 is proposed:

F = 1 − F1(I1
max − I1)F2

(

I4
max(i) − I4

(i)
)

F3

(

I4
max(i)

I4
max

)

(2.2)

Where I1
max and I4

max(i) represent the maximum values taken during the material history

by I1 and I4
(i) respectively. I4

max = maxi(I4
(i)) is the maximum dilatation in space and

time. As proposed by Zuñiga and Beatty [2002b], a function that is constant during first

loading and that evolves with the maximum and current deformations is imposed for the

evolution function.

2.2.2 A particular form for evolution function

A Mooney [1940] constitutive equation is chosen for Wcc, and a Kaliske [2000] quadratic

equation K(I
(i)
4 − 1)2 is chosen for W(i)

cf , where K(i) is a material parameter. A first

particular form is proposed for the stress-softening function, considering that a minimum

of parameters should be introduced:

F (i) = 1 − η

√

I1max − I1

I1max − 3

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)(

I
(i)
4 max

I4 max

)4

(2.3)

In this way, the evolution function depends only on one parameter: η which controls

the stress softening for a given direction, this parameter is without unity. The large

experimental database proposed by Machado et al. [2010, 2012b] on a filled silicone rubber

is used to fit the model. These experimental results are decomposed into three parts: first

the classical uniaxial tension, planar tension and biaxial tests realized by means of a bulge

test [Machado et al., 2012a], second the complex tensile tests with change of directions after

the first loading; and third biaxial tensile tests followed by uniaxial tensile tests. The three

hyperelastic parameters C1, C2 and K(i) are obtained by fitting the different first loading

curves. All the K(i) parameters are chosen equal as the material is initially isotropic. The

followings values are obtained: C1 = 0.05MPa, C2 = 0.03MPa and ∀i K(i) = 0.10MPa.

The last parameter that characterizes the stress softening is obtained by minimizing the

errors on the second loading curves for all the tests. The value η = 4 is obtain

The simulations of the cyclic uniaxial tensile, pure shear and equibiaxial tensile tests

are presented in Fig. 2.1. It appears that the model describes well the stress softening for

all these tests. The model predicts well uniaxial and pure shear tests whereas equibiaxial

first loading curve is underestimated. This phenomenon is expected since first loading

depends only on the hyperelastic equation. As explained by Marckmann and Verron

[2006], it is difficult to fit all the different tests with the same energy density.

29



Figure 2.1: Comparison of the model (solid lines) with experimental data (dotted lines)
from Machado et al. [2010] (a) cyclic uniaxial tensile test, (b) cyclic pure shear test (c)
cyclic equibiaxial test.

The proposed model is now compared with the experimental data of the two com-

plex pre-conditioning methods. First, Fig. 2.2, presents the results for tensile tests with

a change of loading direction between the first and second loadings. The results from

the model do not superimpose exactly experimental data, but all trends are quite well

described for the different directions. Second, the model predictions are compared with

biaxial pre-stretching tests results. The biaxial loading is characterized by the biaxiality

ratio defined as µ = ln(λmin)/ln(λmax) (where λmin and λmax are the minimum and max-

imum in-plane principal elongation). Tests with different biaxiality ratios were used for

the simulation. The comparison of the second loading curves is presented in Fig. 2.3. It

appears that the stress softening is slightly overestimated but the return point on the first

loading curve is very well described.
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Figure 2.2: Comparison of the model (red line) with uniaxial pre-stretching experimental
data (dotted lines) from Machado et al. [2012b]. Second tensile test oriented (a) at 90◦

(b) at 45◦ (c) at 30◦ and (d) at 0◦
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Figure 2.3: Comparison of the model (solid lines) with biaxial pre-stretching experimental
data (dotted lines). Curve a presents simulation of the model for the second load after
an equibiaxial test; curve g presents simulation of the model for the second load after a
biaxial test of biaxiality rate µ = 0.7; curve h presents simulation of the model for the
second load after a biaxial test of biaxiality rate µ = 0.5
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2.3 Finite element implementation

Considering the model proposed in the last section, the strain energy density depends

on the first, second and forty-two fourth invariants, i.e., W = W(I1, I2, I
(i)
4 ). As the

numerical implementation needs a quasi-incompressible formulation [Federico et al., 2008;

Holzapfel et al., 2000; Holzapfel and Gasser, 2001; Ogden, 2003, 1997; Sun W, 2005], the

equation must be rewritten in terms of incompressible invariants as follows:

W = W̄(Ī1, Ī2, Ī4
(i)

) + U(J) (2.4)

where J2 = I3 = det(C) is the volume variation, and Ī1 = I
−1/3
3 I1, Ī2 = I

−2/3
3 I2,

Ī4
(i)

= I
−1/3
3 I

(i)
4 are the incompressible invariants. The problem of the implementation of

anisotropic hyperelastic energy densities has ever been tackled in literature, see for exam-

ple [Peña et al., 2009; Bose and Dorfmann, 2009; Kroon and Holzapfel, 2008]. After the

decomposition given in Eq. 2.4, the second Piola-Kirchhoff stress tensor S is obtained by

the strain energy derivation, as

S = S̄ + Svol = 2







∂W̄
∂Ī1

∂Ī1

∂C
+

∂W̄
∂Ī2

∂Ī2

∂C
+

n
∑

i=1

∂W̄
∂Ī4

(i)

∂Ī4
(i)

∂C







+ J
∂U
∂J

C−1 (2.5)

Where S̄ and Svol are respectively the isochoric and volumetric parts of the second Piola-

Kirchhoff stress tensor S. The Lagrangian deviatoric tangent modulus, is finally given

by

C̄
L

= 4







∂

∂C

(

W̄,1
∂Ī1

∂C

)

+
∂

∂C

(

W̄,2
∂Ī2

∂C

)

+
n
∑

i=1

∂

∂C



W̄,
(i)
4

∂Ī4
(i)

∂C











(2.6a)

(2.6b)

Where W̄,k notes ∂W̄
∂Īk

. The Eulerian deviatoric modulus is deduced by means of the

push–forward operation Φ∗ as C̄
e

= 1
J Φ∗(C̄

L
).

Finally the stress and the tangent modulus are given by the first and second derivates

of the strain energy function with respect to the first, second and fourth invariants. The

general form of C̄
L

and C
L
vol are presented in Kaliske [2000]. For the present model, the

particular forms of the derivatives of the energy are expressed as:

W̄,
(i)
4 = 2K w(i) F (i) (Ī

(i)
4 − 1) (2.7)

W̄,
(i)
44 = 2K w(i)

{

∂F (i)

∂Ī
(i)
4

(Ī
(i)
4 − 1) + F (i)

}

(2.8)

W̄,
(i)
14 = 2K w(i) ∂F (i)

∂Ī1
(Ī

(i)
4 − 1) (2.9)

with the following conditions

if Ī1max = I1
∂F (i)

∂Ī1
= 0

elseif
∂F (i)

∂Ī1
= η 1

2

(

Ī1max − Ī1

Ī1max − 3

)− 1
2 ( 1

Ī1max − 3

)

(

Ī
(i)
4 max − Ī

(i)
4

Ī
(i)
4 max − 1

)(

Ī
(i)
4 max

Ī4 max

)4

(2.10)
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if Ī
(i)
4 max = Ī

(i)
4

∂F (i)

∂Ī
(i)
4

= 0

elseif
∂F (i)

∂Ī
(i)
4

= η

√

Ī1max − Ī1

Ī1max − 3

(

1

Ī
(i)
4 max − 1

)(

Ī
(i)
4 max

Ī4 max

)4 (2.11)

Finally, the model is implemented via a UMAT in the Finite Element code Abaqus and

simulations can be realized [Abaqus, 2002].

2.4 Validation of the model on a structure calculus

2.4.1 Presentation of an experimental holey plate tension test

To test the ability of the model to simulate adequately a complex structure, an experimen-

tal test was designed. A RTV-3428 silicone rectangular plate sample with a thickness of

2mm was molded using the same protocol as in Machado et al. [2010]. After molding, five

holes were generated. The final dimensions of the holey plate are described in Fig. 2.4(a).

The plate was put into a tensile device which allows to record the force undergone by

the plate. The force measure is synchronized with a Stereo Digital Image Correlation

(SDIC) system. The SDIC technique allows the determination of three dimensional sur-

face displacements and strain fields of the plate [Machado et al., 2012a]. Thus, under the

incompressibility assumption, in each point of the plate, the strain tensor is evaluated.

To observe the Mullins effect, a cyclic tensile test is performed on this plate. Its strain

field is studied for a macroscopic engineering strains of 50% after different maximal en-

gineering strain: 50 %, 100% and 150%. It is chosen to study in details three paths in

the holey plate, they are represented in Fig. 2.4(a). These paths were chosen in order to

obtain very different deformation states, i.e., different values of biaxiality ratio µ: that

allows to highlight the reliability of the proposed model. As an illustration, Fig. 2.4(b)

presents the evolution of the biaxiality ratio at the same level of macroscopic deformation

i.e. 50% for the three paths.

2.4.2 Comparison with model predictions

Finite element simulations of the holey plate were performed in plane stress hypothesis

with linear elements. The objective of this section is to compare the experimental and

numerical results for an engineering strain of 50%. The following notations are used in

this part, 1CEF
50 and 1Cexp

50 represent the first load for the numerical model and experimen-

tal results, respectively. In the same way, 2CEF
100 , 2Cexp

100 , and 2CEF
150 , 2Cexp

150 represent the

deformation at 50% after a first load of 100% and 150%, respectively.

2.4.2.1 Global behavior of the plate

The global displacement and the force undergone by the plate for the experimental and

numerical tests are compared in Fig 2.5. It appears that the first and second loadings

are very close. A small difference appears for the first loading but, it is due to the
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Figure 2.4: (a) Silicone holey plate sample containing five holes and the three paths of
interest, (b) Biaxiality ratio along the three paths

underestimation of biaxial loading by the model. This small difference is only due to the

hyperelastic constitutive equation and not to the stress softening function.

2.4.2.2 Contours of the plate and strain fields measurements

Fig 2.6 presents the maximal principal logarithmic strain field obtained for the holey plate

by finite element simulation and experimental measurement for 2C100 configurations. Con-

sidering the strain field distribution along the plate surface, it appears that the FE sim-

ulation represents quite well the experimental data. The results are the same for 1C and

2C150 configurations but these results are not presented in the paper. The contours of the

plate are compared for 1C50, 2C100 and 2C150 configurations and presented in Fig 2.7 for

a deformation of 50%. The experimental tests are the gray picture and the FE simula-

tions are the contour lines in red. It is possible to observe that experimental results and

numerical simulations are almost superposed.

2.4.2.3 Observation of specific paths

To focus on the local behavior of the plate, the maximal principal logarithmic strain along

the different paths (defined in Fig. 2.4) is presented in Fig. 2.8. A comparison between the

experimental and numerical tests is presented. According to the Fig. 2.8(a) the maximal

principal logarithmic strain is greater for the second loadings than for the first loadings

along path1, but Fig. 2.8(b) and (c) show that the maximal principal logarithmic strain

is more important for the first loadings that for the second loadings along path2 and 3.

This difference is explained by the local state of deformation reached along each path.
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Figure 2.5: Comparison of global force response between the proposed model and the
experimental holey plate.

(a) (b)

Figure 2.6: Maximal strain logarithmic fields of the silicone plate for the first loading : (a)
numerical results and (b) experimental results.
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(b)

Figure 2.7: Comparison of the contours of the plate for 1C50 (a), 2C100 (b) and 2C150 (c) at
50% of deformation. Gray pictures represent experimental data and red lines numerical
data.

The maximal deformation is reached along the path1 so the stress-softening too. Since

the stress-softening is maximal along the path1 it generates more important deformation

along this path during seconds loadings. Along the paths2 and 3 the stress-softening is

smaller that along the path1 so the deformations generated along these paths decrease for

the second loadings since the global deformation of the holey is still the same as the first

loading.

Fig. 2.8 also shows that the results are quite similar even if there is not a perfect spa-

tial superposition between experimental and FE simulations. This difference can be also

explained by the out-of-plane deformation, induced by the geometry of the holey plate,

during the experimental test. Indeed for the experimental tests an out-of-plane displace-

ment, close to the holes of the silicone plate, was observed. This out-of-plane displacement

does not occur in numerical simulation since it is defined in plane stress. Thus, the super-

position of the results is better along the path 2 (Fig. 2.8(b)) than along the paths 1 and 3

(cf. Fig. 2.8(a) and (c)) since the out-of-plane displacement observed is minimal near the

hole of the path2 and maximal near the holes of paths1 and 3.
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2.5 General conclusion

The new constitutive equation presented here, permits to describe the stress softening

phenomenon for very different loading states (uniaxial to biaxial). The comparison be-

tween FE simulation and experimental data highlighted that the return point on the first

loading curve is very well described, and that the trends of the second loading curves are

also well depicted. The form of the evolution function can be changed to improve the

comparison between FE simulation and experimental data. The main difference between

this new model and models from literature is that the stress softening function depends

both on a global measure (i.e. the first invariant), and directional measure (i.e. the fourth

invariants) although only a global measure is used in the isotropic approaches and only a

directional measure is used in anisotropic approaches. The recording of this both measures

allows the construction of a stress softening function that captures both the directional

stress-softening and the return points on the first loading. To have a simple invariant

form a quadratic energy density was chosen for the directional energies, but it can also

be adapted to non-Gaussian chain theory as often used in literature. The choice of strain

measures to describe stress softening was motivated by an easier implementation in finite

element codes to obtain an explicit formulation. The general form of the constitutive

equation can also be adapted to other stress softening measures. Thus, this chapter per-

mits the development of a constitutive equation able to take into account two of the non

linear effects classically observed for rubber like materials: stress softening and induced

anisotropy.
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Chapter

3
Permanent set

Some part of this chapter have been published and can be found in the following reference

• M. Rebouah, G. Chagnon, 2013b, Permanent set and stress-softening constitu-

tive equation applied to rubber-like materials and soft tissues, Acta Mechanica, 1-14
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3.1 General introduction

The previous chapter described a new constitutive equation to take into account the stress

softening and the induced anisotropy endured by an isotropic material. Nevertheless as

presented in Chapter 1, it appears that most of materials that present a stress softening
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and an induced anisotropy present also a permanent set. This chapter aims to adapt the

previous model to take into account this phenomenon. Furthermore this chapter present

also an extension of the model to soft tissues. The model is in a first part developed

and validated on HTV rubbers like materials and then the experimental data of Peña

and Doblaré [2009] on ovine vena cava are used to validate his efficiency on an initially

anisotropic soft tissue.

Thus, in Section 2 an experimental study lead on a filled HTV rubber is presented

and highlights that the materials endured several phenomena such as: the stress softening,

the induced anisotropy and the permanent set. In Section 3, constitutive equations are

developed to take into account these effects for rubber like materials. Section 4 presents a

successful comparison of the model with the experimental data. Finally, Section 5 presents

the extension of the constitutive equation to soft tissues, the results are compared to

experimental data.

3.2 Experimental data on silicone rubber

3.2.1 Materials

Two materials are used for this study, an initially isotropic one, a silicone rubber and

an initially anisotropic one, an ovine vena cava [Peña and Doblaré, 2009]. The silicone

rubber used is a Heat Cured Silicone (HCS) also called Hot Temperature Vulcanization

(HTV) which contains 30% of fillers (silica). This filled silicone rubber is vulcanized with

a peroxyde starter. A plate of 185 mm length, 170 mm width and 2.5 mm thick is molded

and vulcanized under an increasing pressure (0.1MPa to 0.5 MPa) and a temperature

180◦C. No experimental study is lead on the soft tissues. The experimental data are used

from Peña and Doblaré [2009].

3.2.2 Classical tensile tests

Tensile tests were realized on samples of 15 mm length, 2.5 mm width and 2.5 mm thick

cut from the molded rectangular plate. First, the influence of the strain rate is evaluated.

Cyclic tensile tests up to λ = 2.5 (λ represents the actual length of a sample over its

initial length) were performed at different strain rates: 0.025 s−1, 0.167 s−1, 1. s−1,

1.667 s−1. For these small variations of the strain rate, there is no significant influence

on the mechanical behavior of rubber like material. For the study it is thus chosen to

perform all the following tests at a strain rate of 1.s−1. Second, silicone specimens were

submitted to cyclic loading up to a fixed stretch. Each of the specimens was subjected

to two loading unloading cycles up to λ = 2. After completion of the second unloading

cycle, each specimen was then loaded up to a stretch of λ = 2.5. No recovery time was

allowed during the two loading unloading cycles. The results of one test can be observed

in Fig.3.1. The stress softening and the permanent set can be observed as an hysteretic

behavior, which is not taken into account in this study.
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Figure 3.1: Cyclic tensile test on HTV silicone at a strain rate of 1s−1

3.2.3 Induced anisotropy by the Mullins effect

In this section, it is proposed to highlight the induced anisotropy by the Mullins effect

in the HTV silicone rubber. First, a large sample of silicone is prepared for a pure shear

test, it is presented in Fig.3.2(a). This sample of 40 mm length, 15 mm width and 2 mm

thick is submitted to a cyclic tensile test up to λ = 2. This test is performed at a strain

rate of 1 s−1. Next, several samples are cut from this sample along different orientations

(α = 0◦, α = 25◦, α = 45◦, α = 90◦) compared to the first tensile direction as illustrated

in Fig.3.2(b). Four new samples of 15 mm length, 2.5 mm width and 2 mm thick are

obtained. Each specimen is subjected to a loading unloading cycle up to λ = 2.5 at a

strain rate of 1 s−1.

The mechanical test realized and described in Fig.3.2 can be studied in different configura-

tions (cf. Fig.3.2(c)). The first configuration C0 is the initial configuration of the sample

(before pure shear test). The C1 configuration is the intermediary configuration (after

pure shear test) and C2 is the final configuration where the four samples cut according to

different orientations from the pure shear test sample are submitted to a tensile test. By

means of these tests, several observations can be done. First, the influence of the orien-

tation of the samples is highlighted in Fig.3.3(a). For this representation, it is considered

that the initial configuration is C1 and not C0 (cf. Fig.3.2(c)). The reference configuration

is thus considered after the pure shear test, that means that the stress softening is studied

without initial permanent set induced by the pure shear test. This allows to focus on the

influence of the orientation. It is observed that for an orientation of α = 90◦ the material

has the same behavior as a first loading (i.e. behavior similar to a virgin material). For

an orientation of α = 0◦ the mechanical behavior is a classical second loading without
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Figure 3.2: Experimental device used to highlight induced anisotropy by Mullins effect
(a) pure shear test, (b) geometry of the cut specimens inside the pure shear specimen,
(c) definition of the configurations, (C0) initial configuration, (C1) configuration after the
pure shear test, (C2) configuration after the pure shear and tensile tests.

change of direction. The intermediary orientations α = 25◦ and α = 45◦ present a be-

havior between a first and second loadings, the stress softening is more important for the

orientation of α = 25◦ than for the orientation of α = 45◦ but the two curves come back

on the same point on the first loading curve. These conclusions are the same as previously

shown on a RTV silicone [Machado et al., 2012b].
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Figure 3.3: Influence of the angle between the first and second loadings on the stress
softening compared to (a) configuration C1, i.e. without taking into account the permanent
set after the first loading and (b) compared to configuration C0, i.e. by taking into account
the permanent set after the first loading

It is also proposed to represent these four tensile tests by taking into account the complete

history of the material i.e. compared to the initial configuration C0 (cf. Fig.3.2(c)), i.e.
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the permanent set generated by the pure shear test is now taken into account. The results

are presented in Fig.3.3(b). The same stress softening as in Fig.3.3(a) is observed, and also

the amount of permanent set endured lasting the pure shear test for the different samples.

It is observed that more the orientation is close to the first loading direction more the

permanent set is important. Indeed, for an orientation of α = 0◦ it can be observed an

initial permanent set (due to the pure shear test) of λresid = 1.136 and at the opposite for

the sample cut at α = 90◦ the initial permanent set is null. These results are similar to

those obtained in literature [Machado et al., 2012b].

3.3 Constitutive equation

3.3.1 General form

Recently, Rebouah et al. [2013] developed a constitutive equation written with strain

invariants to predict the anisotropic stress softening in filled silicone rubbers but without

permanent set. Based on the idea of Govindjee and Simo [1992], the strain energy density

of the material Wsilicone is additively decomposed into two parts: one that represents the

strain energy of the chains linked to filler Wcf and an other part that represents the strain

energy of the chains linked to other chains Wcc. The total strain energy density is thus

Wsilicone = Wcc + Wcf . Rebouah et al. [2013] considered that only Wcf can evolve with

the Mullins effect. In our approach, it is also proposed to describe the permanent set by

means of Wcf . Thus Wcf is represented by an anisotropic strain energy function that

can record the deformation history of the material. Any micro-sphere model defined by a

spatial direction repartition A(i) can be chosen. The dilatation in each direction is defined

by means of I4
(i) = A(i).CA(i) where C is the right Cauchy-Green deformation tensor,

defined by C = FT F, and F is the deformation gradient. The general form of the model

is:

Wsilicone = Wcc(I1, I2) +
n
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ). (3.1)

Wcc is an hyperelastic energy density, I1, I2 are the first and second strain invariants of C.

W(i)
cf is the hyperelastic strain energy associated with each direction and ω(i) represents

the weight of each direction. They are given by Bazant and Oh [1986], F (i) is the Mullins

effect evolution function. The HTV silicone does not present strain hardening, thus it

is decided to use a strain energy that is not presenting a large increase of slope with

deformation. The Mooney [1940] strain energy function is chosen for Wcc and a particular

form is proposed for Wcf . Previously (Rebouah et al. [2013]) the quadratic equation

proposed by Kaliske [2000] was used. Nevertheless for this material this equation presents

a stress hardening too important to represent the considered material, thus a function

with a few hardening is used:

if I4
(i) ≥ 1 W(i)

cf (I
(i)
4 ) = K

2

∫

√

√

√

√

I
(i)
4 − 1

I
(i)
4

dI
(i)
4 else 0 (3.2)

where K is the only material parameter. It is to note that it is considered here that the

strain energy in each direction is considered only in tension.
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Rebouah et al. [2013] proposed an evolution function which depends on the first and fourth

invariants with only one material parameter η. The evolution function is the product of

three terms. The first is an isotropic term which depends only on the first invariant and

represents the global deformation of the material (similar to isotropic approaches), the

second represents the maximal deformation of each direction of the material and the third

the triaxiality of the loading state. In this paper, it is proposed to adapt the constitutive

equation to represent both stress softening and permanent set. For the HTV silicone

rubber, the isotropic part is useless, then it is omitted here. The evolution of the stress

softening is then different for this material the powers of the two terms of the evolution

function are changed and can be considered as parameters. The proposed function is :

F (i) = 1 − η

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)β (
I

(i)
4 max

I4 max

)γ

(3.3)

As proposed in literature by Zuñiga and Beatty [2002b], the stress-softening is described

by the difference between the current strain and the maximum strain. The first term of

the equation is the ratio of this difference between the current and undeformed states.

The second term represents the triaxiality of the strain by the ratio of the strain in one

direction compared to the maximum one. The powers assigned to each term must be

chosen to represent at the best the mechanical behavior of the material and to avoid

numerical problems. It is to note that these functions are phenomenological and their

form is not motivated by micro mechanical observations.

The parameters η, β and γ influence simultaneously the stress softening and the perma-

nent set of the material. I
(i)
4max represents the maximal value of I

(i)
4 for the whole material

history for each direction and I4 max represents the maximal value of I
(i)
4 for the whole

material history and all directions. To control the permanent set a strong restriction pro-

posed by Rebouah et al. [2013] is suppressed here, the evolution function F (i) is allowed

to become negative. That means that the zero stress of a direction is no longer reach

for zero deformation but for a deformation depending on the parameter η. It is to note

that the evolution function F (i) depends on two different maximal values of the fourth

invariant, i.e in the considered direction, and for the whole material. Finally the Cauchy

stress is obtained by:

σsilicone = σcc + σcf − pI (3.4)

Where σcc is the part of the Cauchy stress that represents the chains linked to other chains

and σcf the part of the Cauchy stress that represents the chains linked to fillers, expressed

as:

σcc = 2B
∂Wcc

∂I1
+ 2

(

I1B − B2
) ∂Wcc

∂I2
(3.5)

σcf = 2
42
∑

i=1

ω(i)F (i) ∂Wcf

∂I
(i)
4

(i)

FA(i) ⊗ A(i)FT (3.6)

where the 42 directions repartition proposed by Bazant and Oh [1986] were chosen, in this

study.
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3.3.2 Validity of the model

It remains to verify that the presented model is in agreement with the requirements of

thermodynamics (see e.g. Coleman and Gurtin [1967]). If only isothermal processes is

considered, the Clausius-Duhem inequality must be satisfied

−∂Wsilicone

∂I
(i)
4 max

İ
(i)
4 max ≥ 0 (3.7)

−∂Wsilicone

∂I4 max
İ4 max ≥ 0 (3.8)

where İ
(i)
4 max ≥ 0 and İ4 max ≥ 0 are the maximum deformation increase rates. By means of

manipulations of Eqs. (3.7), (3.8) and (3.1), it can be easily established the next sufficient

relations with the functions F (i):

∂F (i)

∂I
(i)
4 max

≤ 0 ∀i (3.9)

∂F (i)

∂I4 max
≤ 0 ∀i (3.10)

Considering, the generic form of the evolution constitutive equation (5.5), it can be ex-

plicitely written that:

∂F(i)

∂I
(i)
4 max

= −ηα

(

I
(i)
4 max−1

)

−
(

I
(i)
4 max−I

(i)
4

)

(

I
(i)
4 max−1

)2

(

I
(i)
4 max−I

(i)
4

I
(i)
4 max−1

)β−1 (
I

(i)
4 max

I4 max

)γ

−ηβ 1
I4 max

(

I
(i)
4 max−I

(i)
4

I
(i)
4 max−1

)β (
I

(i)
4 max

I4 max

)γ−1
(3.11)

∂F (i)

∂I4 max
= −ηβI

(i)
4 max

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)β (
I

(i)
4 max

I4 max

)γ−1

(3.12)

To verify Eqs (3.9) and (3.10), the conditions to verify are α > 0, β > 0 and
(

I
(i)
4 max − 1

)

−
(

I
(i)
4 max − I

(i)
4

)

> 0. This last condition is automatically verified if I
(i)
4 ≥ 1. It is verified

for I
(i)
4 ≤ 1 by means of Eq (3.1) as no energy is considered in compression, that means

that this term becomes 0.

3.4 Simulations of the model

To validate the model, it is proposed to compare its simulations to the different mechanical

tests. The values of the material parameters were fitted on the different mechanical tests.

The obtained values are: C1 = 0.3 MPa, C2 = 0.15 MPa, K = 1.6 MPa, η = 5, β = 0.5

and γ = 2.5.

3.4.1 HTV on a tensile test

First the cyclic tensile test presented in Fig.3.1 is compared to the prediction of the model.

The results obtained are illustrated in Fig.3.4. These results are satisfactory since it can

be observed that the Mullins effect and the permanent set are quite well described by the

model.
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Figure 3.4: Comparison of the prediction of the model (full lines) to experimental data
(dotted lines)

3.4.2 HTV on a tensile test after a pure shear test

In this section, it is proposed to compare the model to the experimental results of the

pure shear test followed by tensile tests according to different orientations. A compari-

son between the model and the tests is proposed in Fig.3.5. It is to note that the first

and second loadings (and thus the elongation) do not correspond to the same test. For

each test the definition of λ corresponds to the elongation in the tensile test direction

whatever the experiment. Every simulated orientations present a similar behavior to the

experimental results, thus the same observation as the one made in paragraph 2.3 can be

done. Furthermore it is shown that the model is able to take well into account the induced

anisotropy. Finally for the curve at α = 25◦ it is observed that the second loading curve

of the model present a rupture of slope about λ = 1.8. This phenomenon is due to the

discretization along the 42 directions of Bazant and Oh [1986]. The problem is that the

discretization in 42 directions creates a numerical anisotropy, as explained in literature

[Gillibert et al., 2010]. This phenomenon can be avoided with a full integration in space,

nevertheless the computational formulation become more complicated and it becomes very

time consuming. Despite discretization problems, these results proved the ability of the

model to take into account the induced anisotropy and the permanent set.

3.4.3 Analysis of the model simulations

In this part, it is proposed to analyze the evolution of the stress softening along the

42 spatial directions. The principal request directions during a cycling tensile test are

observed along the direction of tension
→
x , where the maximal deformations are reached
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Figure 3.5: Comparison with experimental oriented data and the model. The black full
lines represent the theoretical first loading in uniaxial tension (1Cmodel), the black dot-
ted lines represent the second loadings (i.e. the tensile test) for the different orientations
(2Cmodel). The red dashed lines represent the experimental results for the different ori-
ented samples of tensile tests after the pure shear test (2Cexp)

for different cycles until a maximal elongation of λ = 1.5, then λ = 2. and λ = 2.5. The

42 directions are represented in projection in the plan (
→
z ,

→
y ) in Fig.3.6 as Miehe et al.

[2004]. It is to note that many directions have the same angle with the
→
x direction. They

are summarized by the definition of 4 circles.

The stress σxx which corresponds to the stress in the tensile direction. It is by construction

the tensorial sum of stresses along the 42 directions [Bazant and Oh, 1986]. More a

direction is closer from direction
→
x , more its contribution to σxx is important. All the

directions that belong to a same circle provide the same contribution in the case of uniaxial

tension in direction
→
x . Thus, for clarity of the figure only one direction per circle is

presented. The stress strain behavior of each direction is presented in Fig.3.7. It appears

that the most loaded direction is direction 1, which is consistent since it corresponds to

the tensile direction
→
x . Nevertheless it is observed that the directions which belong to the

circle 3 (4-5-6-7) and to the circle 4 (18-19-20-21) endure also an important deformation

and generate important stresses. It can also be observed that the directions which belong
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to the circle 2 (10-11-12-13-14-15-16-17) have very few influence, and the directions which

belong to the circle 1 (2-3-8-9) are equal to zero as they are loaded only in compression.

Besides direction 1, circles 3 and 4 present a negative part of the Cauchy stress during

second loadings, that means that these directions present a permanent set. The directions

that belong to circle 1 and 2 are still superior or equal to zero thus they do not present

permanent set.

The evolution function generates a new equilibrium position, meaning that the zero stress

state is no longer reached for zero deformation. This new equilibrium depends on the

maximum deformation and is thus more important for directions close to direction
→
x .

This is illustrated by Fig.3.8. It is observed that along the direction 1, the circle 3 and

4 the evolution function becomes negative, thas means that the material presents a zero

stress, and thus a permanent set. It is to note that the directions where the evolution

function become negative are the same direction for which the stress become negative and

thus directions which generate permanent set. For this study the 42 directions proposed

by Bazant and Oh (1986) were used, nevertheless the other directions repartition proposed

by the same author can also be used. It was proved that the results observed are identical

but they are not presented in the paper.
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Figure 3.7: Representation of the first component of the stress tensor (σxx) for cyclic
tensile test up to λ = 2.5
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3.5 Adaptation of the constitutive equation to soft tissues

3.5.1 Adaptation of the model

It is proposed here to adapt the general form of the model previously described to non

initially isotropic materials, i.e. soft tissues. This anisotropy is imputed to the presence of

fibers, often collagen [Holzapfel, 2000], into the matrix of the tissue. In many soft tissues,

there exist two main fibers orientations (the model will be developed for 2 directions, but

the proposed principle would be the same for more directions). The orientation of these

fibers depends on the studied soft tissues [Natali et al., 2009; Schröder et al., 2005; Li and

Robertson, 2009; Ehret and Itskov, 2009; Peña, 2011]. As classically done in literature,

it is proposed to model the soft tissues mechanical behavior as the sum of three terms.

The first part represents the behavior of the matrix, the second and third parts represent

respectively the mechanical behavior of the fibers oriented in the two directions.

Wsoft-tissue = Wmatrix + Wfiber1 + Wfiber2 (3.13)

It is also often assumed that the fibers can only endured tension, i.e. that no stress is

generated in compression. The principle is to propose a strain energy that can simulate the

stress softening both in the matrix and in the fibers. In the matrix, an initially isotropic

strain energy is considered, which is similar to the one proposed for silicone rubbers in

part 3. The same form is thus proposed

Wmatrix = Wcc(I1) +
n
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ). (3.14)

Different hyperelastic strain energies are used, as soft tissues present more strain hardening

than silicone rubber. Classical strain energies are chosen for Wcc(I1) [Demiray, 1972;

Delfino et al., 1997] and for W(i)
cf [Kaliske, 2000], they are defined as:

Wcc(I1) = C1exp
(

C2(I1 − 3)2 − 1
)

(3.15)

W(i)
cf = K(I

(i)
4 − 1)2 (3.16)

where C1, C2 and K are material parameters. The evolution function F (i) of the matrix

is the same as the one used for silicone rubber model, described in Eq.(5.5).

The strain energy for fiber j is the product of an hyperelastic strain energy Wcf-fiberj
and

an evolution function Ffiber(j) to describe the Mullins effect:

Wfiber1 = Ffiber(j) .Wcf-fiberj
(3.17)

The hyperelastic strain energy of each fiber is noted Wcf-fiberj
[Holzapfel et al., 2000] is

expressed as:

Wcf-fiberj
=

Kf

2
exp(I

(j)
4 − I

(j)
40

)2 (3.18)

Kf is a material parameter and I
(j)
40

matches to the value of I
(j)
4 for which the stress

hardening of the material appears. Finally, due to the hypothesis of tension in the fiber,

the evolution function is also adapted for the fibers, where only I
(j)
4 is necessary. A
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simplified form of the evolution function is used compared to the one used in Eq.(3).Indeed

for the fiber only one direction is considered, that means that the third term that took

into account the triaxiality is not necessary. Only the second term is consistent

F (j)
fiber = 1 − ηf

(

I
(j)
4 max − I

(j)
4

I
(j)
4 max − 1

)β

(3.19)

Where ηf and β are the material parameters which allows to take into account the stress

softening and the permanent set of the fibers. It is to note that in this part, it is considered

that the material cannot endured compression, thus the stress cannot become negative in

any direction. Nevertheless it generates the begining of the permanent set for the material.

This difference compared to the last model (for rubber like materials) is due to the stress

hardening of soft tissues which is very important, and thus the evolution function must

be adapted to correctly describe the phenomena.

3.5.2 Comparison with experimental data

To highlight the ability of the model to mimic soft tissues, it is proposed to compare it by

means of the experimental data of Peña and Doblaré [2009] considering first and second

loadings at different maximum deformation in ovine vena cava during uniaxial tension.

The orientation of the fibers was chosen at α = 45◦. These results were obtained for the

following values of the different material parameters C1 = 0.28MPa; C2 = 0.16MPa; K =

0.13MPa; Kf = 0.5MPa; η = 2., ηf = 5 and β = 2. As observed in Fig.3.9 the experimental
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Figure 3.9: Experimental data and comparison with the model for oriented sample of 45◦

and 135◦ in the tissue

data obtained for loading reloading cycles at different stretches are well described by the
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model. Fig.3.9(a) represents the theoretical tensile test for a tensile test along the axial

direction for a value of α = 45◦ and Fig.3.9(b) along the circumferential direction. For both

tests it is observed that the hyperelastic behavior, the stress softening, the permanent set

and the initial anisotropy are well taken into account. In this case the induced anisotropy is

not visible on the experimental data, nevertheless the model can also take it into account.

3.6 General conclusion

As explained and shown in this chapter a simple model is proposed here to take into

account several effects of the Mullins effect. This model is adapted for both rubber like

materials and soft tissues. Compared to literature Diani et al. [2006a]; Merckel et al. [2012]

the major difference is that the permanent set and the stress softening are considered as

correlated phenomena and thus the material parameters allow to represent simultaneously

the stress softening and the permanent set. Due to the use of two different materials (HTV

and soft tissues) different expressions were used for the strain energies and the evolution

functions. Nevertheless the discretization by a micro sphere model represents well the

both material. Finally, by means of the extension of the model to soft tissues, the ini-

tially anisotropy of the materials can be taken into account independently of the induced

anisotropy due to the stress softening. For both of these materials the constitutive equa-

tions were successfully compared to experimental data to take into account simultaneously

the stress softening of the material, the permanent set, the induced anisotropy or the ini-

tial anisotropy of the material. Furthermore, due to the formulation in strain invariant of

the constitutive equations, can easily be implemented into a Finite Element code.

The authors thank Professor Estefania Peña for helpful information on the experimen-

tal data of Peña and Doblaré [2009].
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Chapter

4
Viscoelasticity of initially isotropic materials

Some part of this chapter have been published and can be found in the following reference

• M. Rebouah, G. Chagnon, 2014, Extension of classical viscoelastic models in

large deformation to anisotropy and stress softening, International Journal of Non-

Linear Mechanics, 61, 54-64
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4.1 General introduction

As presented in the previous chapters the stress softening, the induced anisotropy and

the permanent set can be taken into account in the modeling of rubber like materials

and extended to soft tissues. Nevertheless, as presented in Chapter 1, most of materials

present also a viscoelastic behavior. This chapter proposed a way to take into account

these viscous effects. For this purpose, the chapter can be divided in three main parts.

First an experimental part to characterize the material used in this section: a filled NBR.

This study begin by the determination of the glass transition temperature by means of

Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) tests.

Then mechanical tests are performed to highlight the viscoelasticity of the material. In

this way, the influence of the strain rate is highlighted, cyclic tensile tests with imposed

relaxation times and intern subloop are carried out to emphasize the influence of each non

linear phenomena.

The second part is mainly issued from Rebouah and Chagnon [2014] and presents the

extension of two classical viscoelastic models by means of a 3D micro spherical homoge-

nization. The two classical models recently studied by Petiteau et al. [2012] are studied

a Convolution Integral Model (CIM) and an Internal Variable Model (IVM). This section

is exclusively theoretical, simulations are proposed. The differences induced by the two

formulations are evaluated by means of simulated classical mechanical tests: uniaxial, pla-

nar and equibiaxial tension are compared. Then an initial anisotropy is induced by means

of the spatial repartition used in the 3D homogenization. Finally, a stress softening term

is added in the constitutive equation. All the simulations highlight the capacity of the

formulation.

Finally, the last section of this chapter presents an adaptation of the theoretical method

presented in the second part to preexisting models. Based on a 3D micro spherical ho-

mogenization, it is proposed to extend four classical models of IVM type. First the model

developed by Huber and Tsakmakis [2000] which is defined by a linear evolution equation

and then the micro mechanical model proposed by Bergstrom and Boyce [1998, 2001].

The elastic part of the Bergstrom and Boyce [1998, 2001] model is either represented by a

Neo Hookean, a Mooney Rivlin or (as initially proposed) by the eight chain model. The

robustness of the models is evaluated by means of comparisons with the experimental data

obtained in first section.

4.2 Experimental Part

The experimental study was lead on an industrial filled NBR, due to confidentiality the

composition cannot be revealed. Several tests were performed to highlight its behavior.

First DMA and DSC tests are presented to determine the glass transition temperature of
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the material used. Then, the strain rate influence is studied and cyclic tensile tests with

imposed relaxation times and intern subloop are performed. These tests were performed

to study the hysteresis loop associated to the material. It is to note that the NBR used,

present an initial isotropic behavior.

4.2.1 Glass transition temperature

A DSC is performed by using a Q200 TA instruments at a heating rate of 10◦C.min−1 on

a NBR sample. The test was carried out for a temperature cycle from 50◦C to -80◦C and

back to 50◦C. The material glass transition temperature was obtained as the inflection

temperature measured and the results are presented in Fig.4.1. It appears that the glass

transition temperature of the material is different for the cooling and the heating range.

For the cooling range the glass transition temperature is obtained at approximately -

13.8◦C and for the heating at -7.2◦C.
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Figure 4.1: DSC performed on NBR at a heating rate of 10◦C.min−1

The material was also tested in DMA at a frequency of 1Hz, for strain amplitude of 0.5%

and at a heating rate of 2◦C.min−1 with a pre-stretch of 15%. The results obtained are

presented in Fig.4.2. As for the DSC the glass transition temperatures are different for

the cooling and the heating range. For the cooling, a glass transition temperature of

approximately -16.0◦C is obtained and -6.5◦C in heating.

The results obtained with both techniques are similar. Indeed, with these two tests it can

be concluded that a glass transition temperature of approximately -7.0◦C is obtained in
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heating, and -15.0◦C in cooling. For the study of elastomers the glass transition considered

is often the one obtain in cooling [Yi et al., 2006; Diani et al., 2013; Rey et al., 2013]. All

the following tests are performed at an ambient room temperature (θ > 23◦C), nearly up

to the glass transition temperature.
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Figure 4.2: DMA on NBR at a frequency f=1Hz and a strain amplitude=0.5% at a heating
rate of 2◦C.min−1

4.2.2 Influence of the strain rate

The second test carried out is a cyclic tensile test up to λ = 1.5, λ = 2 and λ = 2.5. This

test was performed at the following values of strain rate α = 0.00025s−1, α = 0.0016s−1,

α = 0.01s−1 and α = 0.0166s−1. The obtained results are presented in Fig.4.3, it is

observed that the strain rate influences the mechanical behavior of the material. More the

strain rate is important more the stress hardening of the material is important too. This

simple test highlights that the material presents an important stress softening between the

first and the second loadings (Mullins effect) and a viscoelastic behavior. Moreover, the

material presents also a residual strain that depends on the strain rate applied. Indeed

more the strain rate is important more the amount of residual strain is important too. If

the mechanical permanent set (supposed as damaged) is considered as constant for any

strain rate, it is clearly highlighted that the viscous permanent set is dependent of the

strain applied. No proportionality is observed between the curves at the different strain

rates, this observation supposed that the influence of the strain rate is different on the

hyperelastic behavior, the stress softening and the viscoelasticity of the material.
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Figure 4.3: Influence of the strain rate on the mechanical behavior of NBR

4.2.3 Cyclic tests with imposed relaxation times

The third test performed on the material is a cyclic test containing several relaxation

times as proposed by Lion [1997b] for instance. This test is carried out at two different

strain rates: α = 0.00025s−1 and a α = 0.0166s−1. The different strain states reached and

the relaxation times are defined by a cycle repeated five times. This cycle is designed as

follow: a load up to λ = 1.5, 30 min of relaxation, a load up to λ = 2, 30 min of relaxation,

and a load up to λ = 2.5, an unload up to λ = 2, 30 min of relaxation, an unload up to

λ = 1.5, 30 min of relaxation and an unload up to λ = 1. This cycle is described at the

top of the Fig.4.4. Even if this cycle is repeated five times for the two strain rates, only

the two first cycles are presented for more clarity, it appears that after the second cycle

the material presents the same behavior in the following cycle for the two strain rates,

only the experimental errors are observed between these cycles, curves are overlapping.

The results of the tests are presented in Fig.4.4, where the black full lines represent the

relaxation test and the red dotted line represents the same test without relaxation times

during loadings and unloadings (five cycles up to λ = 2.5).

Fig.4.4 highlights also that the material presents a stress softening between the first and

the second cycles (Mullins effect), and it does not evolve for superior cycles. It is also

observed that the residual strain is more important for high strain rates. The weak

compression observed lasting the residual strain is due to the buckling of the sample. At

each relaxation time, the stress endured by the material decreases until the curve gets on

an equilibrium curve and the amount of overstress is highlighted. It is to note that the

curves come back on those of the cyclic tests carried out without relaxation, thus it is

assumed that the mechanical behavior is not modified by the relaxation times.
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Figure 4.4: Comparison of relaxation tests at two strain rates (black full lines) and tests
without relaxation (red dotted lines).

At the end of the relaxation time the curve reached a specific stress state for each strain

state. That means that the material is on its equilibrium state, only a few viscous effects

are represented at these points. Several equilibrium curves can be defined. The first

equilibrium curve is defined for the first loading, the second equilibrium curve for the

second loading (and other loading after) and an equilibrium curve for the unloading (which

is overlapping for the first and second cycles). These three equilibrium curves are depicted

in Fig.4.5(a) for a strain rate of α = 0.00025s−1 and in Fig.4.6(a) for a strain rate of

α = 0.016s−1. The difference of stress between the load and the unload for the first

and the second cycles can be deduced from these equilibrium curves as represented in

Fig.4.5(b) and in Fig.4.6(b). It appears that the difference of stress between load and

unload is much more important for the first cycle than for the second cycle for both strain

rates. This difference is due to the stress softening of the material, indeed for the first

cycle the difference observed is due to the stress softening and the viscous effects, for

the second cycle this difference is only due to the viscous effects. Those observations are

identical for both strain rates studied, nevertheless it appears that for a strain rate of

α = 0.016s−1 the hysteresis of the equilibrium curves is weaker than the one at a strain

rate of α = 0.00025s−1.

Finally, the Fig.4.7 represents all the equilibrium curves deduced from the cyclic test

with imposed relaxation times for both strain rates. It appears that, as long that the

global deformation endured by the material is "small" (inferior to 100%), the equilibrium

curves are similar for the both strain rates. At a deformation of λ = 2.5 the difference

between equilibrium curve is maximal and due to the lack of relaxation time imposed to

the material. It explains the difference of stress reached for the both strain rates at the

same strain state. However, it appears that the second loading curves and the unloading

curves are very close for both strain rates, it can be supposed that most of the hysteresis

is due to the viscous effects and that a permanent hysteresis could be neglected.
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Figure 4.5: Equilibrium curve associated to the material for the cyclic tensile test (a) and
the difference of the equilibrium curve between the loading and the unloading for the first
and the second loading (b), at a strain rate α = 0.00025s−1
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Figure 4.6: Equilibrium curve associated to the material for the cyclic tensile test (a) and
the difference of the equilibrium curve between the loading and the unloading for the first
and the second loading (b), at a strain rate α = 0.016s−1

4.2.4 Subloop tests

Finally, cyclic tests including interne loops (called subloop tests) are performed at two

different strain rates: α = 0.00025s−1 and α = 0.0166s−1. A representation of the test is

presented at the top of Fig.4.8 (a) and 4.9(a). The cycle is designed as follow: a loading

up to λ = 1.5, an unloading up to λ = 1.25, a loading up to λ = 2, an unloading up to

λ = 1.75, loading up to λ = 2.5, an unloading up to λ = 2, a loading up to λ = 2.25,

an unloading up to λ = 1.5, loading up to λ = 1.75 and an unloading up to λ =, this

represented is repeated five times for both strain rates. The results are presented in Fig.4.8

(a) and Fig.4.9(a). It appears that the first and the second loadings are very different due

to the stress softening, but the unloading are overlapping. The third, fourth and fifth cycle

are overlapping the second cycle, thus only the first and second cycle cyle are represented
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in the following figures and discussions for more clarity.
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Figure 4.8: Subloop test for NBR sample at a strain rate of α = 0.00025s−1 (a) and the
size of the hysteresis subloop (b).

It is proposed to study the size of the hysteresis subloops during the first and the second

cycles at the both strain rates in Fig.4.8 (b) and Fig.4.9(b). It appears that the size of the

hysteresis subloops are more important for a strain rate of α = 0.0166s−1 compared to

α = 0.00025s−1. This difference is due to the viscous effects of the material that increase

with the strain rate as highlighted in the previous experimental tests. Furthermore, it also

appears that the hysteresis is more important for the the first cycle than for the second

cycle, it supposed that a part of the hysteretic behavior is due to the stress softening.
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Figure 4.9: Subloop test for NBR sample at a strain rate of α = 0.0166s−1 (a) and the
size of the hysteresis subloop (b).

Finally, it appears that the size of the hysteresis subloops are similar for the loading and

unloading for both strain rates, except for the hysteresis of the first subloop which is

greater than the others.

4.2.5 Discussion

The experimental tests performed on the filled NBR highlight that the material presents

most of the non linear phenomena that can be observed for rubbers like materials. Indeed,

stress softening, permanent set and viscous effects are emphasized. Cyclic tests with

imposed relaxation time highlight the part of the mechanical behavior that corresponds

to the equilibrium part and the overstress part. The cyclic tensile tests highlight too that

the material present an hysteresis due to the viscous effects and stress softening for the

first loading. The equilibrium curves are almost overlapping fro the second loading and

unloading, thus it is conclude that permanent hysteresis is not a phenomena observed for

this material. The subloop tests highlight that the size of the hysteresis is similar for all

state of deformations, except for the first one in loading.

4.3 Micro sphere formulation of simple viscoelastic models

This section is purely theoretical and no comparisons with experimental data are proposed

here. The point is to present a 3D homogenization of two classical models, an IVM and

a CIM, by means of a micro spherical approach. The constitutive equations of the 3D

homogenization are depicted and comparisons between both formulations are proposed.

A way to describe an initial anisotropic behavior is presented and the proposed equations

to take into account the Mullins effect of the last chapter are added to the viscoelastic

model.
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4.3.1 Presentation of the models

The two viscoelastic isotropic models used in this paper are those used by Petiteau et al.

[2012]. The first one is an IVM deduced from the theory of Green and Rivlin [1957] and

the second is a CIM deduced from the theory of Green and Tobolsky [1946]. These two

models are quickly recalled in this section, in the incompressible framework.

4.3.1.1 Internal Variable Model

The simplest IVM for viscoelasticity was derived by Huber and Tsakmakis [2000] and

is represented by a Zenner model. This model is based on the decomposition of the

deformation gradient F between an elastic part Fe, which represents the deformation

gradient of a spring and an inelastic part Fp, which represents the deformation gradient

of a dashpot as illustrated in Fig.4.10. Thus, the deformation gradient F can be expressed

as

F = FeFp (4.1)

C
0

C
1

C
2

Fi 
Fe 

F 

(a) (b)

F 

Fe Fp 

1

Néo hookean 

parameter C 
2

parameter η 

Néo hookean 

parameter C 

Figure 4.10: Representation of the different configurations by using a strain type internal
variable (a) and the rheological representation of the components (b)

Classically it is considered, that there is no rotation in Fp and thus the rotation is

only in the elastic part Fe. This permits to keep unique the elastic-inelastic decomposition.

Furthermore it is assumed that the material is incompressible, thus each deformation is

defined as det Fe = 1 and det Fp = 1. The strain enery density associated to the

rheological representation is defined by:

W(Fe, Fp) = W1(Fe) + W2(Fp) (4.2)

where W1 represents the strain energy density between the initial C0 and the intermediary

C1 configuration and W2 the strain energy density between the intermediary C1 and final

C2 configuration. According to the Second Principle of Thermodynamics

Dint = σ : D − Ẇ ≥ 0 (4.3)

where Dint is the internal dissipation and D is the rate of deformation tensor. After some

algebric manipulations described in Huber and Tsakmakis [2000] and Petiteau et al. [2012],
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the second principle can be rewritten as

(

σ − 2
∂W1

∂B
B − 2

∂W2

∂Be

Be

)

: D + 2FT ∂W2

∂Be

Fe : Dp ≥ 0 (4.4)

where Dp is the inelastic strain rate tensor defined as Dp = 1/2(Lp +LT
p ) and Lp = ḞpF−1

p

the velocity gradient. B is the left Cauchy Green tensor (defined as B = FFT ) associated

to the global deformation and Be is the left Cauchy Green tensor (defined as Be = FeFe
T )

associated to the elastic deformation. According to the procedure described by Coleman

and Noll [1963] for deformation processes, the incompressibility constraint and to Petiteau

et al. [2012] who defined a Neo Hookean strain energy [Treloar, 1943] for each spring of

the rheological model, it is deduced from Eq.(4.4) that the Cauchy stress can be described

as:

σ = −pI + 2C1B + 2C2Be (4.5)

and the dissipation

2FT ∂W2

∂Be

Fe : Dp ≥ 0 (4.6)

where C1 the material parameter of the Neo Hookean model associated to the global

deformation and C2 is the material parameter of the Neo Hookean model of the elastic

part. It is quickly recalled that a Neo Hookean model is defined as W = C1(I1 −3), where

I1 is the first strain invariant. It is deduced as in Petiteau et al. [2012] that for uniaxial

extension in the direction
→
x the first component of the stress tensor is:

σ = 2C1

(

λ2 − 1

λ

)

+ 2C2

(

λe
2 − 1

λe

)

(4.7)

where σ is the stress for a tensile test along the direction
→
x and λ and λe the global

and elastic stretches along the same direction. To determine the deformation of elastic

and inelastic parts, i.e. the left Cauchy Green tensor of the elastic part, it is necessary to

establish an evolution equation of Be, which is deduced as the simplest sufficient condition

to satisfy Eq.(4.6). As described by Huber and Tsakmakis [2000] and Petiteau et al. [2012],

the evolution equation is

Ḃe = LBe + BeLT − 4
C2

η

(

Be
2 − 1

3
I1BeBe

)

(4.8)

where η is a material parameter. Particularly, in uniaxial extension the expression can be

written by means of the stretch of the elastic part:

λ̇e = λe
λ̇

λ
− 4

C2

3η
(λ3

e − 1) (4.9)

4.3.1.2 Convolution Integral Model

The CIM model is an adaptation of a K-BKZ formulation [Berstein et al., 1963]. By using

the same model as Petiteau et al. [2012] the stress endured by an incompressible material

can be expressed as follow:

σ = −p(t)I + 2g0B(t) − 2F(t)

∫ t

−∞
g1 exp

(

− t − τ

τr

)

∂C−1(τ)

∂τ
dτFT (t) (4.10)

67



where g0, g1 are material parameters that represent the stiffness of the material and are

expressed in MPa and τr is a material parameter that represents a relaxation time in

seconds. Adapted to uniaxial extension in direction
→
x , the model can be defined as:

σ = 2g0

(

λ2(t) − 1

λ(t)

)

+

∫ t

−∞
2g1 exp

(

− t − τ

τr

)

[

1

λ(τ)

∂λ(t)

∂τ

(

2
λ(t)2

λ(τ)2
+

λ(t)

λ(τ)

)]

dτ

(4.11)

4.3.2 Homogenization by means of a micro spherical approach

4.3.2.1 General definition

The formulations previously presented (Eq.(4.22) and Eq.(4.10)) are isotropic. To turn it

into a possible anisotropic formulation it is proposed to adapt the model with a sphere unit

formulation, i.e. a spatial repartition of n directions, where each direction is defined by

an initial vector A(i) transformed in a vector a(i) after deformation by a(i) = FA(i), where

i is the number of the direction. It is often considered that each direction corresponds

to a macromolecular chain and thus each chain can endure only tension-compression. To

take into account the behavior of a material according to different directions, the fourth

invariant I
(i)
4 is used. It is to note that the elongation and the fourth invariant are

equivalent according to the definition:

I4
(i) = A(i).CA(i) = λ(i)2

(4.12)

Where C = FT F is the right Cauchy Green strain tensor. The following sections describe

how to turn the models described previously into spherical models.

4.3.2.2 Application to the IVM

For IVM formulations, the location of the rotation in the decomposition between the

elastic and the inelastic parts (cf. Eq.(4.22)) is still an open issue. Indeed it is often

estimated that the rotation endured by the material occurs into the elastic part and not

into the inelastic one. By means of this spherical formulation, the problem does not occur

since each direction is only submitted to tension, that means that there is no hypothesis

to formulate about the rotation in this approach. It is proposed to turn the IVM into

a sphere unit formulation, thus each expression described previously has to be adapted.

First, the evolution equation of the IVM is just adapted from Eq.(4.8) to be defined along

n directions, it writes for each direction i:

Ḃ
(i)
e = L(i)Be

(i) + Be
(i)LT (i) − 4

C2

η

(

Be
(i)2 − 1

3
I1BeBe

(i)
)

(4.13)

thus for uniaxial extension:

λ̇(i)
e = λe

(i) λ̇(i)

λ(i)
− 4

C2

3η

(

λ(i)
e

3 − 1
)

(4.14)

by means of this expression one can obtain the value of the stress in each direction:

σ(i) = 2C1

(

λ(i)2 − 1

λ(i)

)

+ 2C2

(

λ(i)
e

2 − 1

λ
(i)
e

)

(4.15)
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4.3.2.3 Application to the CIM

To adapt the formulation of the CIM, the previous equation Eq.(4.11) must also be defined

in n directions. Thus for the CIM, and due to the hypothesis of uniaxial extension the n

directions can be described only by λ(i)(t). The stress for each direction can be deduced

from the Eq.(4.11):

σ(i) = 2g0

(

λ(i)2
(t) − 1

λ(i)(t)

)

+
∫ t

−∞ 2g1exp
(

− t−τ
τr

)

[

1
λ(i)(τ)

∂λ(i)(t)
∂τ

(

2 λ(i)2
(t)

λ(i)2
(τ)

+ λ(i)(t)

λ(i)(τ)

)]

dτ

4.3.2.4 Definition of the global stress

In this paper, it is proposed to use the spatial repartition of 42 directions proposed by

Bazant and Oh [1986]. This discretization is homogeneously spread in space and allow

to describe an isotropic behavior. The choice of 42 directions is made because they well

represent the space and limit also the anisotropy due to the discretization as explained by

Gillibert et al. [2010]. To obtain the total stress endured by the material, it is necessary

to sum the influence of each direction by applying a weight ω(i). Thus, the stress induced

by the material for both models is defined as:

σ =
42
∑

i

ω(i)σ(i)(a(i)
n ⊗ a(i)

n ) (4.16)

where a
(i)
n is the normalized vector for each direction, i.e. a

(i)
n = a(i)

‖a(i)‖ and σ(i) is given

by Eq.(4.23) or Eq.(4.16) according to the chosen model. The spatial repartition of 42

directions used and proposed by Bazant and Oh [1986] is represented according to different

plans in Fig.4.11. The Fig.4.11(a) represents the directions in the plan (
→
y ,

→
z ). It appears

that each direction belong to a circle. A representation of the different circles is illustrated

in the plan (
→
x ,

→
z ) in Fig.4.11(b).

4.3.2.5 Simulation of the homogenized models

It is proposed in this section to compare the results for a same loading for classical and

spherical formulations and for both models at several strain rates. The Fig.4.12(a) high-

lights the results obtained for two cycles tensile tests up to λ = 4 along the direction
→
x for

the IVM classical formulation (as presented in Petiteau et al. [2012]) and Fig.4.12(b) the

results with the spherical formulation for the IVM. For both simulations the parameters

used are identical as those used by Petiteau et al. [2012]: C1 = 1 MPa ; C2 = 9 MPa

and η = 1MPa.s. It is observed that the obtained behaviors are different for the two

formulations, the results of the spherical formulation provide a lower response than the

classical formulation for all the different strain rates studied. But the influence of the

strain rate is similar for the two formulations. In the same way it is proposed to highlight

the most requests directions for the spherical formulation. A weight stress tensor can be

associated to each direction, i.e. w(i)σ(i)(a
(i)
n ⊗ a

(i)
n ), the contribution of the weight stress

tensor along the tensile direction is illustrated in Fig.4.13 for a strain rate of α = 100 s−1.

It is to note that each direction that belongs to a same circle (cf. Fig.4.11) presents the
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same mechanical behavior. Moreover, it is observed that some directions do not have any

influence: directions 2-3-8-9 which belong to the circle 1 as illustrated in Fig.4.11. Indeed

it is consistent that these directions do not present any influence since the directions of

the circle 1 projected in the direction
→
x (which matches to the tensile direction) is equal

to zero. The other directions present an increasing contribution for the circles 2, 3, 4 and

for the direction 1 which corresponds to the tensile direction.
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Figure 4.13: Stress strain curves for IVM for the 42 directions of the sphere unit model

It is proposed to realize the same two cycles tensile test up to λ = 4 with the classical and

spherical formulations of the CIM. The obtained results are presented in Fig.4.14. The

parameters used are identical as those used by Petiteau et al. [2012]: g0 = 1 MPa, g1 = 9

MPa and τr = 1
36 s. As previously, both formulations do not predict the same behavior,

but the influence of the strain rate is similar. Indeed the spherical formulation induced

a lower stress state than the classical formulation for the same strain state at different

strain rates. The stress state for each direction can be observed in Fig.4.15 for a strain

rate of α = 100 s−1 and for the same mechanical parameter. As previously, the most

request direction is the direction 1 since it is the direction that corresponds to the tensile

direction
→
x .

4.3.2.6 Comparison of the two theories with a sphere unit formulation

As proved for the classical formulation by Petiteau et al. [2012], it appears that the two

models exhibit the same response, even if the strengthening is larger for CIM than for

IVM. Furthermore, the hysteresis loop is larger for IVM than for CIM. These differences

are more important at high strain rates. With the sphere unit formulation it is observed

that both models exhibit also similar responses, still with some differences, as illustrated in
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Figure 4.14: Stress strain curve of the CIM model for an isotropic formulation (a) and a
sphere unit formulation with 42 directions (b)
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Figure 4.15: Stress strain curves for CIM for the 42 directions of the sphere unit model
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Fig.4.12(b) and Fig.4.14(b). Indeed for all strain rates the two models present a different

strengthening (larger for CIM than IVM) and hysteresis (larger for IVM than CIM). The

differences are still more important for high strain rates. It is to note that the results of

the sphere unit formulation are similar to the classical formulation for both models with

a scale factor at each strain rates. This sphere unit formulation provides similar results

as those of Miehe and Göktepe [2005]; Diani et al. [2006b] for isotropic materials. It is to

note that the sphere unit formulation is based on a Neo Hookean constitutive equation

but could be represented by any phenomenological constitutive equation instead of micro

mechanics model based on Langevin function as proposed by Miehe and Göktepe [2005];

Diani et al. [2006b]. Anyway, the spherical formulation can be adapted to any strain

energy density.

4.3.3 Comparison of the classical formulations and the sphere u nit formulations

for different mechanical loadings

In this part, it is proposed to compare the results obtained with a classical formulation

and a spherical formulation for the IVM and the CIM according to different loadings

states. For each formulation and model, it is proposed to simulate a two cycles test up to

λ = 4 for uniaxial (UT), planar (PT) and equibiaxial (ET) tests. The stress equations for

planar and equibiaxial tests are easily deduced from Eq.(4.22) and Eq.(4.8) for the IVM

and from the Eq.(4.10) for the CIM. The Fig.4.16 illustrates the results obtained for the

IVM and the CIM with the classical formulation. It is observed that the three mechanical

tests provide approximately the same response, the first load and the beginning of the

first unload. For the ET it is observed that the models cannot truly take into account the

viscoelasticity since the tests present highly compressive stress during the unloading, these

results are not consistent with the experimental observations. It is also expected to obtain

a stress state more important for an equibiaxial test compare to uniaxial or planar state

[Treloar, 1943; Marckmann and Verron, 2006; Boyce and Arruda, 2000]. This phenomenon

can be explained by the unidirectional modeling used for the classical models.

The same cyclic tensile tests were performed with the sphere unit formulation for the

IVM and CIM as illustrated in Fig.4.17. It appears that the equibiaxial tests provide a

stress state more important than the uniaxial or planar tensile tests for a same strain

state with the same elementary hyperelastic models. Furthermore with the sphere unit

formulation, it is observed that there is only a few compressive stress during the unloading.

These results are more consistent than those obtained with the classical formulation for

the both models. These results highlight that the sphere unit formulation is more adapted

to describe an equibiaxial test than the classical formulation for this type of viscoelastic

models for classical formulations. The uniaxial and planar tensile tests are also well

described by the sphere unit formulation.

In conclusion, these simulations prove that simple tensorial form models cannot be easily

used to represent biaxial loading, and leads to inconsistent results. At the opposite the

use of spherical approach to represent three dimensional loadings is efficient even if the

three dimensional homogenization is based on simple tensorial form issue from uniaxial

development.
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Figure 4.16: Stress-strain curves for uniaxial (UT), planar (PT) and equibiaxial (ET)
tension for isotropic formulation with the IVM and the CIM
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Figure 4.17: Stress-strain curves for uniaxial (UT), planar (PT) and equibiaxial (ET)
tension for sphere unit formulation with the IVM and the CIM

4.3.4 Extension to anisotropic viscoelasticity

By means of the spatial repartition of the directions used previously, an isotropic vis-

coelastic formulation was written. It is proposed now to use the sphere unit formulation

to obtain an anisotropic response by a parametric study of the different directions. That

means that each direction is no longer represented by the same mechanical parameter.

With the sphere unit formulation, the directions are homogeneously distributed in space,

a projection of this distribution was presented in Fig.4.11. This homogenous repartition of

the directions induces a quasi isotropic behavior [Gillibert et al., 2010]. Thus, the results

obtained for a tensile test along the direction
→
x or

→
y are identical.
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4.3.4.1 Variation of the viscoelastic parameter ( η and τr)

4.3.4.2 Presentation

It is proposed to induce a variation of the viscoelastic parameters η for the IVM and τr

for the CIM. The variation of the viscoelastic terms do not change the expressions of the

stress described previously. Except that, it is considered that this parameter depends

on the considered directions as illustrated in Fig.4.18. To highlight the influence of an
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Figure 4.18: Representation of the spatial distribution of Bazant and Oh directions in the

plan (
→
y ,

→
z )

anisotropic formulation compared to an isotropic formulation, several numerical simula-

tions are performed:

• First, a cyclic tensile test along the direction
→
x until a stretch of λ = 4 is performed

for a sphere unit formulation where the viscoelastic term is constant in each direction:

η(i) = 1 MPa.s and τr(i) = 1
36 s ∀i, these tests are denoted (dir1 − isotropic).

• Then the same cyclic test along
→
x is performed for a variation of the viscoelastic term

for each direction as described previously and illustrated in Fig.4.18: η(i) = η0 cos(θi)

and τr(i) = τr0 cos(θi) where η0 = 1 MPa.s and τr0 = 1
36 s, these tests are denoted

(dir1 − anisotropic).

• Finally the same cyclic tensile test, with the variation of the viscoelastic parameters

(η(i) = η0 cos(θi) and τr(i) = τr0 cos(θi)), is performed along the direction
→
y , these

tests are denoted (dir2 − anisotropic).

These simulations are performed for both models (IVM and CIM) and the same sets of

mechanical parameters defined previously are used (cf. paragraph 4.3.2.5). All the results

are simulated for a strain rate α = 100 s−1.
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4.3.4.3 Analysis

The results of the tests described previously for the IVM and the CIM are presented in

Fig.4.19. It is observed that the results are similar for the CIM (variation of τr), and for
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Figure 4.19: Variation of the viscoelastic parameter τr and η for the both model IVM and
CIM, the other parameters are identical for a cyclic uniaxial tensile test.

the IVM (variation of η). Indeed the stress strain curves obtained for (dir1 − isotropic)

and (dir1 − anisotropic) are very similar, the predominant direction in the spherical

approach is the closest one from the loading direction. As the viscoelastic parameters

were not changed in direction 1 the mechanical behavior is not so modified. At the

opposite, the stress strain curve (dir2 − anisotropic) is very lower than the stress strain

curves corresponding to a tensile test along the direction
→
x . Thus, it proves that with the

spherical formulation the two models can easily represent a multidirectional anisotropic

viscoelastic behavior.

4.3.4.4 Variation of the hyperelastic parameter of the inelastic part ( g1 and C2)

4.3.4.5 Presentation

It is proposed for this second study to vary a second material parameter. The C2 (IVM)

or g1 (CIM) parameters, are not the same in all directions. Thus, the variation of the

parameters is expressed in the same way as previously, that means that C2 and g1 are

now depending on the orientation of the directions in space as illustrated in Fig.4.20. As

previously several tests are performed:

• First a tensile test along
→
x until a stretch of λ = 4 for a constant value of the

parameters in each direction: C2(i) = 9 MPa and g1(i) = 9 MPa ∀i, these tests are

denoted (dir1 − isotropic).

• Then the same tensile test in the direction
→
x with varying values of the parameters:

C2 = C2−0 cos(θi) and g1 = g1−0 cos(θi) where C2−0 = 9 MPa and g1−0 = 9 MPa,

these tests are denoted (dir1 − anisotropic).
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• Finally, still the same tensile test along the direction
→
y with also varying values

(dir2 − anisotropic) is performed.

4.3.4.6 Analysis

The results can be observed in Fig.4.21, where g1 and C2 are varying and the other me-

chanical parameters are constant, the simulations are presented for a strain rate α = 100

s−1. As previously it is observed that for a tensile test along the direction
→
x the re-
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Figure 4.21: Variation of g1 and C2 for the both models IVM and CIM, the other param-
eters are still the same (where η and τ are constant) for a cyclic uniaxial tensile test.

sults are quite similar for the both models, even if the anisotropic spherical formula-

tion (dir1 − anisotropic) provides lower results as the isotropic spherical formulation

(dir1 − isotropic). The tensile tests along the direction
→
y for the anisotropic spherical
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formulation (dir2 − anisotropic) present results lower than the two other stress strain

curves for both models. Thus, by varying these other mechanical parameters it is also

possible to obtain an anisotropic behavior for both models, and the behavior of the chain

oriented in the loading direction is still predominant.

4.3.4.7 Conclusions

According to this study, it was observed that, by means of a sphere unit formulation, it is

easy to obtain an anisotropic behavior. The anisotropy of a material was induced by means

of the mechanical parameters. All the parameters do not induce the same anisotropic re-

sponse. Thus, it is possible to turn a material anisotropic as wished. The results presented

in this paragraph where performed at α = 100s−1, but the conclusions are identical for

other strain rates. Compared to others pre-existent models about viscoelasticity, it is to

note that there is only a few proposed models in literature [Miehe and Göktepe, 2005; Di-

ani et al., 2006b] to take into account a multidirectional anisotropic viscoelastic behavior.

Miehe and Göktepe [2005] proposed an adaptation of its initial model to take into account

anisotropic behavior and Diani et al. [2006b] proposed a model to take into account the

induced anisotropy due to the stress softening. Most of the anisotropic models are devel-

oped for soft tissues but they only present two different directions, due mainly to the fiber

reinforcement in the material Peña et al. [2007]; Taylor et al. [2009]. The model presented

here allows to take into account the initial anisotropy of a material by the simple way of a

sphere unit formulation and can thus represented a multidirectional anisotropy by means

of a simple phenomenological model.

4.3.5 Viscoelasticity and Mullins effect

As explained previously the viscoelasticity is one of the non linear phenomenon associated

to rubberlike materials and soft tissues. Nevertheless other phenomena as Mullins effect

or permanent set are also current for this materials. It is proposed in this part to add the

phenomenological stress softening model developed by Rebouah et al. [2013] at the CIM

and IVM to take into account the Mullins effect in the previous sphere unit viscoelastic

models. It is to note that any other constitutive equation for describing the Mullins effect

can also be used, especially the micromechanics-based model as De Tommasi et al. [2006];

Diani et al. [2006b]; Miehe and Göktepe [2005]. The main equations are recalled here

where a repartition of n initial spatial directions A(i) is also used. The general form of

the strain energy is:

W = Wcc(I1) +
n
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ). (4.17)

where Wcc represents the hyperelastic Neo Hookean model already used in the viscoelastic

model, and F (i) is the Mullins effect evolution function similar as the one proposed by

Zuñiga and Beatty [2002b] and W
(i)
cf is the strain energy associated with each direction.

The energy proposed by Kaliske [2000] is chosen:

W(i)
cf =

K

4
(I

(i)
4 − 1)2 (4.18)
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and the evolution function is:

F (i) = 1 − ηm

√

I1max − I1

I1max − 3

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)(

I
(i)
4 max

I4 max

)4

(4.19)

where ηm is a mechanical parameter that represents the intensity of the stress softening

between the first and the second loadings, and I1max, I4
(i)
max and I4max are respectively the

maximum values of I1, I4
(i) for the direction i and I4

(i) for all directions.

4.3.5.1 IVM

The Mullins effect model was added to the viscoelastic part and thus the rheological

scheme is modified as illustrated in Fig.4.22. The final expression of the IVM and Mullins

Fe 

Elastic part 

Viscoelastic part 

Stress softening part 

Figure 4.22: Representation of the viscoelastic and Mullins effect modeling

effect model is expressed as:

σ =
42
∑

i

ω(i)

(

2C1

(

λ(i)2 − 1

λ(i)

)

+ 2C2

(

λ(i)
e

2 − 1

λ
(i)
e

)

+ 2λ(i)2F (i) ∂Wcf

∂I
(i)
4

(i)
)

a(i)
n ⊗ a(i)

n

(4.20)

It is proposed to simulate a tensile test defined by 5 cycles until λ = 2, then 5 cycles until

λ = 3 and finally 5 cycles until λ = 4. A strain rate of α = 15 s−1 is imposed and the

chosen parameter are: g0 = 1 MPa, g1 = 9 MPa, η=1 MPa.s, K=0.5 MPa and ηm=4.5.

The results are illustrated in Fig.4.23. The behavior of the viscoelastic part (visco) and

stress softening (Mullins) are represented independently and finally the sum of these two

behaviors is represented (total). It is observed that for each cycle the Mullins effect is well

taken into account and can be very well treated independently of the viscous effects. The

global behavior is finally composed of hyperelasticity, viscoelasticity and stress softening.

4.3.5.2 CIM

The Mullins effect part is added to the viscoelastic part of the CIM in the same way as

described for the IVM. The evolution function, and the strain energy are the same. Thus,

the following expression of the stress is obtained:
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Figure 4.23: Simulation of 15 cycles with the IVM sphere unit model coupled with the
Rebouah et al. [2013] stress softening model

σ =
42
∑

i

ω(i)
([

2g0

(

λ(i)2
(t) − 1

λ(i)(t)

)]

+

∫ t

−∞
2g1 exp

(

− t − τ

τr

)

[

1

λ(i)(τ)

∂λ(i)(t)

∂τ

(

2
λ(i)2

(t)

λ(i)2
(τ)

+
λ(i)(t)

λ(i)(τ)

)]

dτ + 2λ(i)2F (i) ∂Wcf

∂I
(i)
4

(i)
)

a(i)
n ⊗ a(i)

n (4.21)

It is also proposed to simulate the same test as the one described in paragraph 4.3.5.1.

The results are obtained for a strain rate of α = 15 s−1 and the material parameters are:

g0 = 1 MPa, g1 = 9 MPa, τr= 1
36 s, K=0.5 MPa and ηm=4.5. The results are illustrated

in Fig.4.24. As for the IVM it is observed that for cycles until a same strain state that

the Mullins effect is well described and can be also very well treated independently as the

viscous effects.
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Figure 4.24: Simulation of 15 cycles with the CIM sphere unit model coupled with the
Rebouah et al. [2013] stress softening model

4.3.6 Conclusion

This section presented an extension of Petiteau et al. [2012] study by proposing an adap-

tation of classical viscoelastic model to spherical approaches to realize a three directional

homogenization in an incompressible framework. This formulation can be adapted to rub-

ber like materials and soft tissues. Two classical models of viscoelasticity (IVM and CIM)

were written by means of a spherical formulation and compared to a classical formula-

tion. It appears that, if a homogeneous repartition of directions in space is used (isotropic

behavior), the sphere unit model allows to describe better different loadings state (uni-

axial, planar and equibiaxial tension) than a classical formulation by correctly describing

the equibiaxial extension. This permits to use these simple constitutive equations in a

tridimensional framework and to be able to simulate any loading state even with simple

constitutive equations.

Then, the sphere unit formulation was used to induce an initial anisotropy by imposing

different mechanical parameters in each direction. It was observed that an anisotropic

behavior could be easily created in this way, simply by a parameter variation along the
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directions. Finally, a stress softening model was added to the spherical formulation to also

take into account the Mullins effect.

4.4 Extension to preexisting models

The point of this section is to propose models able to take into account the mechanical

behavior of the studied NBR in first section. For this, and based on the previous part, sev-

eral models are extended to a 3D homogenization by means of a micro spherical approach

as described in the previous section. The first model studied is the model developed by

Huber and Tsakmakis [2000] which is defined by a linear evolution equation, then three

adaptations of the micro mechanical model proposed by Bergstrom and Boyce [1998, 2001]

are used. The elastic part of the Bergstrom and Boyce [1998] model is either represented by

a Neo Hookean [Treloar, 1943], a Mooney Rivlin [Mooney, 1940] or (as initially proposed)

by the eight chain model [Arruda and Boyce, 1993]. Each model is built by considering

that each direction endured tension compression loading. The following sections give the

expression of the stress in one direction for each model.

4.4.1 The model of Huber and Tsakmakis [2000]- Huber

The first model used is the one proposed by Huber and Tsakmakis [2000] which was already

described in the previous part of this chapter. The stress endured by each direction is

described by the equations Eq.(4.22) and Eq.(4.23), that are recalled here:

λ̇(i)
e = λe

(i) λ̇(i)

λ(i)
− 4

C2

3η

(

λ(i)
e

3 − 1
)

(4.22)

σ(i) = 2C1

(

λ(i)2 − 1

λ(i)

)

+ 2C2

(

λ(i)
e

2 − 1

λ
(i)
e

)

(4.23)

This model is denoted as Huber in the following.

4.4.2 The model of Bergstrom and Boyce [1998]- BB

In this paragraph, the classical equations of the Bergstrom and Boyce [1998, 2001] model

are quickly recalled. The Bergstrom and Boyce [1998, 2001] model can be represented

by an equilibrium part, denoted network A, and an overstress, denoted network B as

represented in Fig.4.25. The network A represents the spring in parallel with the network

B which is a represented by a spring and a dashpot in series. The Cauchy stress associated

to the elastic part is a 8 chains model [Arruda and Boyce, 1993]. This model is one of the

most used (see Dal and Kaliske [2009]; Rickaby and Scott [2013]; Kuhl et al. [2005] for

instance).

σA =
µA

Jλ

L−1(λ/λlock
A )

L−1(1/λlock
A )

dev
[

B
]

+ κ [J − 1] I (4.24)

Where µA and κ are material parameters, J = det(F), B = J−2/3FFT , λ =
√

tr[B]/3

and L−1(x) is the inverse Langevin function, dev represents the deviatoric operator, λlock
A
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Figure 4.25: Representation of the two network for Bergstrom and Boyce [1998, 2001]
model.

is a material parameter that represents the maximal elongation of the network A. In the

same way the Cauchy stress of the network B can be expressed as:

σB =
µB

Je
Bλe

B

L−1(λe
B/λlock

B )

L−1(1/λlock
B )

dev
[

Be
B

]

+ κ [Je
B − 1] I (4.25)

Where µB and κ are material parameters, Je
B = det(FB

e), Be
B = Je

B
−2/3Fe

BFeT
B , λe

B =
√

tr[Be
B]/3 and λlock

B is a material parameter that represents the maximal elongation of

the network B. The total Cauchy stress is defined by σ = σA + σB. To determine the

stress of the total network the total velocity is used LB = ḞF−1. The velocity can be

decomposed into an elastic and an inelastic part, thus LB = Le
B + Fe

BLe
BFe−1

B = Le
B + L̃

e
B,

furthermore we can defined L
p
B = Ḟ

p
BF

p−1
B = D

p
B +W

p
B and L̃

p
B = D̃

p
B +W̃

p
B. The unload

configuration can be made unique by one particularly approach that takes the inelastic

tensor equal to zero W̃
p
B = 0. The viscous rate of change of the network B is defined by

D̃
p
B = γ̇BNB, where γ̇B is an effective deformation rate and NB gives the direction of the

stress state. The effective strain rate is defined by

γ̇B = γ̇0(λp
B − 1 + ǫ)C

[

τ

τbase

]m

(4.26)

where γ̇0, C, τbase, ǫ and m are material parameters, and τ is an effective stress. All the

details are given in Bergstrom and Boyce [1998, 2001].

To determine the stress endured by each direction of the micro spherical approach, the

same theory as previously is used. By means of the hypothesis of tension compression the

stress endured by each direction can be deduced. Furthermore the material is considered

as incompressible. The incompressibility is handled for each direction and not globally.

It means that the hydrostatic pressure is taken into account for each direction. As the

material is considered incompressible the second term of the equations Eq.(4.24) and

Eq.(4.25) are useless. The expression of the stress for the network A becomes:

σ
(i)
A =

µA

λ(i)

L−1(λ(i)/λlock
A )

L−1(1/λlock
A )

dev
[

B(i)
]

(4.27)

and for the network B:

σ
(i)
B =

µB

λ(i)

L−1(λ(i)/λlock
B )

L−1(1/λlock
B )

dev
[

B(i)
]

(4.28)
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Finally the total stress for each direction is defined as σ(i) = σ
(i)
A +σ

(i)
B . Simple calculus per-

mit to deduce the expression of the stress for each direction with the tension-compression

hypothesis. This model is denoted as BB in the following.

It is important to note that the eight chain model is already equivalent to a 3D homoge-

nization, from the micro mechanical point of view, there is no physical meaning to apply

a micro spherical approach to an eight chain model. Nevertheless it is still proposed to

observed the results that could be obtained for such new phenomenological model.

4.4.3 Bergstrom and Boyce [1998, 2001] with Neo Hookean- BB − NH

The third model used is also based on the Bergstrom and Boyce [1998, 2001] model.

Indeed, the same equations are used to model the viscous effects but the two springs of

the equivalent rheological scheme are not represented by an eight chain model but by a

Neo Hookean strain energy. Thus, it can be deduced that the stress endured by each

direction, in tension-compression is defined by:

σ(i) = σ
(i)
A + σ

(i)
B = C1A



I
(i)
4A − 1

√

I
(i)
4A



+ C1B



I
(i)
4B − 1

√

I
e(i)
4B



 (4.29)

Where I
(i)
4A is equivalent to the square elongation of the elastic part of the reseau A and

I
e(i)
4A is equivalent elongation of the elastic part of the network B, and is determined by

means of the evolution equation proposed by Bergstrom and Boyce [1998]. C1A is the

material parameter of the network A and C1B is the material parameter of the network B.

As previously the incompressibility is handled for each direction and not globally. This

model is denoted as BB − NH in the following.

4.4.4 Bergstrom and Boyce [1998, 2001] with Mooney Rivlin- BB − MR

The fourth model used is also based on the Bergstrom and Boyce [1998, 2001] model. As

previously the viscous effects are taken into account by means of Bergstrom and Boyce

[1998, 2001] equations, but the two spring of the equivalent rheological scheme are not

represented by an eight chain model but by a Mooney Rivlin strain energy. The stress

endured by each direction is defined by:

σ(i) = C1A



I
(i)
4A − 1

√

I
(i)
4A



+ C1B



I
e(i)
4B − 1

√

I
e(i)
4B





+2C2A

(

I
(i)
1AI

(i)
4A − I

(i)
4A

2
)

+ 2C2B

(

I
e(i)
1B I

e(i)
4B − I

e(i)
4B

2
)

(4.30)

Where C1A and C2A are the material parameters of the network A and C1B and C2B are

the material parameters of the network B. I
(i)
1A is the first invariant for each direction of

the network A and I
e(i)
1B is the first invariant for each direction of the elastic part of the

network B. It is recalled that the elongation depends on the fourth invariant (I
(i)
4 = λ(i)2

),

thus first invariant can be expressed in function of the fourth as: I
(i)
1 = I

(i)
4 + 2

√

I
(i)
4

. This

model is denoted as BB − MR in the following.
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4.4.5 Definition of the global stress

For each one of the four models used, the stress endured by one direction is known. To

deduce the global stress endured by the material the micro spherical approach is used

and the equation defined previously Eq.(4.16) is used. Indeed for the Huber’s model the

equation presented in first section is used, for the Bergstrom and Boyce [1998, 2001] the

Eq.(4.27) and Eq.(4.28) are injected in Eq.(4.16), for the mixed Bergstrom and Boyce

[1998, 2001] with Neo Hooke the Eq.(4.29) is injected in Eq.(4.16), and finally for the

mixed Bergstrom and Boyce [1998, 2001] with Mooney Rivlin the Eq.(4.30) is injected in

Eq.(4.16). The equations obtained for the four models permit to take into account the

hyperelastic and the viscoelastic behavior simultaneously, this part of the stress is denoted

as σviscoelastic.

4.4.6 Mullins effect

The viscoelasticity is not the only effect to take into account, as highlighted by the exper-

imental data, the NBR used present also an important stress softening. The constitutive

equations used previously to describe the Mullins effect are used as in Rebouah et al.

[2013]. The Mullins effect strain energy W
(i)
cf associated to each direction is:

W(i)
cf =

√

√

√

√

I
(i)
4 − 1

I
(i)
4

(4.31)

the global strain energy is deduced by means of the micro spherical approach such as:

W =
n
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ). (4.32)

The evolution function F (i) is similar as previously (cf. Eq.(4.19)). The stress part due

to the Mullins effect is deduced from this equation (Eq.4.32) and is denoted as σMullins.

For the four model described previously the stress due to the Mullins effect is added to

the viscoelastic stress. Finally the total stress is a

σ = σMullins + σviscoelastic (4.33)

4.4.7 Comparison with experimental data

In this last section, the models are compared to the experimental tests performed at a

strain of α = 0.00025s−1 for the cyclic test with imposed relaxation times and the subloop

tests. Only one strain rate is used since these modeling approaches are not adapted to the

range of rates experimentally studied. The value of the material parameters of the models

are given in the table 4.1 and the curve results are presented in Fig.4.26 and in Fig.4.27.

Table 4.1: Material parameters for the Huber model

Model C1(MPa) C2(MPa) K (MPa) η(MPa.s) ηm

Huber 1.25 1 1 8000 7
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Table 4.2: Material parameters for the BB models

Parameter unit BB-MR BB-NH BB

µa (MPa) 0 0 2.4

µb (MPa) 0 0 3

C1A (MPa) 0.75 1.5 0

C1B (MPa) 1.9 1.8 0

C2A (MPa) 1.8 0 0

C2B (MPa) 0 0 0

γ̇0 (s−1) 0.33 0.33 0.30

K (MPa) 0.7 0.8 0.9

ηm () 7 7 7

τb (MPa) 1 1 1

m () 10 10 8

c () -0.1 -0.1 -0.1

λlockA=B () 0 0 2.9

4.4.7.1 Cyclic tests with imposed relaxation times

For the cyclic tests with imposed relaxation times, it appears that all the models described

previously are able to take into account the non linear phenomena associated to the

material (cf. Fig.4.26). Nevertheless, it also appears that some give a better estimation

than other. For instance the Huber′s model does not allow an accurate description of

the mechanical behavior, first because of the the hyperelastic behavior which is not well

described and then because of the viscous effects. The linear evolution equation used do

not permit to take into account well the viscous effects. But this model is very simple to

use and could give good approximations in a first approach.

Then the mixed models BB − NH and BB − MR give similar results. The hyperelastic

behavior is still not very well described but the viscous effects are much better taken

into account. It appears that the hyperelastic behavior is not clearly improved by using a

Mooney Rivlin model instead of a Neo Hookean. Indeed, for the viscoelastic part the use of

the second term do not improve the predictive model at all. The material parameter (C2B)

is equal to zero and the model becomes equivalent to the Neo Hookean for the viscoelastic

part. The hysteretic loop is well described as long as the deformations reached are not

too important. After 50% of global deformation and due to the stress hardening of the

material, the hysteretic behavior is not as well described. The low capacity of the model

for large deformation are due first to the stress hardening of the material which is not well

described and then to the relaxation time imposed during the test. When the material

reached its maximal global deformation λ = 2.5, the unloading starts immediately, no

relaxation time is imposed. However, the non linear evolution equation of the viscoelastic

part proposed by Bergstrom and Boyce [1998, 2001] improve well the description of the

material compared to the Huber model.

Finally the BB model is the one that allows the best description of the mechanical behavior

of the material. Nevertheless the micro mechanic based model submitted to a micro
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Figure 4.26: Comparison with experimental data of cyclic tensile test with imposed relax-
ation times at a strain rate α = 0.00025s−1.

spherical approach does not have any physical meaning. In this study, it can be only

considered as a phenomenological model.

The Mullins effect is well described for the test and for all the models studied. The rupture

of slope is important at the unloading of the largest deformation (λ = 2.5) because the

material present an important stress softening and the evolution equation decreases too

fast. It could be improved by using another evolution function associated to the stress

softening nevertheless a function that decreases faster than the one proposed will probably

not verify the second principle and will not be polyconvex.

4.4.7.2 Subloop tests

The subloop tests, represented in Fig.4.27, are most complex and difficult proposals. In-

deed the models are not able to take into account this typical loading. The intern subloops

cannot be described with the same mechanical parameters as those used to describe the

major loop. Even if, for all the models, the material parameter are identical as those used

for the relaxations tests, it does not allowed to take into account this complex loading.

87



1.0 1.5 2.0 2.5

0

2

4

6

1.0 1.5 2.0 2.5

0

2

4

6

1.0 1.5 2.0 2.5

0

2

4

6

1.0 1.5 2.0 2.5

0

2

4

6

BB-MR

C
au

ch
y 

S
tre

ss
 (M

P
a)

 theory
 experimental

BB-NH

C
au

ch
y 

S
tre

ss
 (M

P
a)

 theory
 experimental

BB

C
au

ch
y 

S
tre

ss
 (M

P
a)

 theory
 experimental

Huber

C
au

ch
y 

S
tre

ss
 (M

P
a)

 theory
 experimental

Figure 4.27: Comparison with experimental data of cyclic tensile test with intern subloops
at a strain rate α = 0.00025s−1.

The micro spherical approach does not allow an improvement for this typical loading. To

take well into account this test, a modeling where the hysteresis is considered as perma-

nent and strain rate independent should be more efficient as proposed by Rey et al. [2014].

As for the previous test studied, it is observed that the Mullins effect is well described.

The rupture of slope observed is still due to the model used at the large deformation.

4.4.8 Discussion

In this chapter, several modeling choices were made. First, the tension compression hy-

pothesis in each direction of the micro sphere was done. Due to this hypothesis a stress

equation was imposed in each direction instead of a strain energy. This non common

method influences the predictive model. The mechanical behavior is influenced by using

a stress or a strain energy, even if they can be derived one compared to the other in 3D.

Then the incompressibility is not handled globally but locally. Indeed for the viscoelastic

part, it is handled for each direction. As each direction is considered as incompressible

the sum of them is too. The incompressibility of the Mullins effect is by contrast handled
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globally.

4.5 General conclusion

This chapter was divided in three major parts, first the experimental part focused on the

study of a NBR. Several tests lead on this material exhibit its highly non linear mechanical

behavior: stress softening, permanent set, hysteresis, time dependent behavior.

Then a theoretical part focused mainly on the adaption of two classical models al-

ready existent into a micro spherical approach. It appears that the use of a micro spher-

ical approach to take into account viscous effects is efficient. The global behavior stays

unchanged but by means of this approach an anisotropic mechanical behavior can be mod-

eled. Furthermore it appears that complex loading can be model. This approach permits

an improvement of classical and simple models.

Based on the two first parts, the third part presented a comparaison of the experimental

data with several viscoelastic models turned into a micro spherical approach. For this, the

Huber and Tsakmakis [2000] model and three extended models issue from Bergstrom and

Boyce [1998, 2001] are used. It appears that their capacity can be increased by a sphere

unit approach, especially for complex loading. Nevertheless it is still very difficult to build

a model able to take into account all the non linear phenomena at different strain rates

for complex loadings as the cyclic tensile tests with intern subloops.
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Chapter

5
Architectured materials

Some part of this chapter have been submitted and can be found in the following reference

• M. Rebouah, G. Chagnon, D. Favier, 2014, Development and modeling of filled

silicone architectured membranes, Meccanica, submitted
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5.1 General introduction

By means of the rubber like materials, it is possible to create materials with different

atypical mechanical behavior as explained in Chapter 1. These new materials are called

architectured materials. Their main advantage is to locally modify the material microstruc-

ture or structure and to control the mechanical behavior. The objective of this chapter

is to induce and control initial anisotropy of an architectured material, while the bulk

material is initially isotropic. As presented in the first chapter there are two types of

architectured materials. First, some that can be considered as architectured due to their
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geometric structure, and secondly, materials considered as architectured due to their mi-

crostructure. In this way, this chapter is divided in two main parts. A first section that

presents a geometrical architectured material by means of a crenelated membrane made

of Room Temperature Vulcanization 3428 (RTV3428) filled silicone. And a second sec-

tion that presents micro-structural architectured membranes by means of two fabrication

processes on two different materials: a RTV3428 and a Thermo Plastic Elastomer (TPE).

Both sections present experimental data performed on the different samples and a mod-

eling is proposed for each material. In first section only the Mullins effect is took into

account, a numerical implementation is proposed too. In the second section the viscous

effects of the materials are added to the modeling, but the proposed constitutive equation

is not implemented into a Finite Element code.

5.2 Geometrical architectured membrane

This first section presents a geometrical architectured membrane. It can be separated in

three parts, the core of the membrane (the central part) and the upper and lower lattices

of crenels that are on the external surfaces of the core of the membrane. Crenelated mem-

branes were already studied by Meunier [2011] with an unfilled silicone rubber which was

perfectly hyperelastic but suffered from bad properties in tearing which makes it difficult

to use in real applications. In this study, it is chosen to develop the same crenelated

membranes, with a filled silicone rubber to improve the resistance of the material. Due

to the fillers, the material presents good tearing properties although it shows other phe-

nomena like stress softening or hysteresis as presented in Chapter 1. The aim of this

part is to study the mechanical behavior of such architectured membranes when they are

stretched in their plans and to develop the associated constitutive equation. A method to

develop an equivalent model of the core of the membrane and of the crenels is presented.

The membrane properties come from the bulk material, i.e. the filled material. Its main

properties are to support reversible large deformations and to endure stress softening that

induces anisotropy as presented in Chapter 2. First, the experimental set up and the

architectured membranes are described. Several tests are performed to highlight the me-

chanical behavior. Then, a theoretical study presents the constitutive equation developed

to build the strain energy of the architectured membranes. Finally, the constitutive equa-

tions are implemented into a Finite Element (FE) code. A comparison between the FE

simulation and a complex experimental test is proposed. Short conclusions on geometrical

architectured materials are presented.

5.2.1 Materials and methods

The same filled silicone rubber (RTV3428) is used to manufacture all the architectured

membranes presented in the paper. This material was already used in previous works and

some non linear phenomena as hysteresis, relaxation [Machado et al., 2010; Rey et al.,

2013] and induced anisotropy [Machado et al., 2012b] were already studied. As illustrated

by Rey et al. [2013], the Mullins effect is the prevailing phenomenon so the experimental

results focus on the study of this phenomenon. The other phenomena are not considered

in a first approach.
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5.2.1.1 Description of the architectured membrane

The architectured membranes are manufactured according to the process described by Me-

unier [2011], by injection molding to obtain circular architectured plane membranes. For

that purpose, a specific mold was used. The mold is composed of two circular crenellated

metallic plates of 16 cm diameter, each one of these plates comes lock another holey metal-

lic plate on each side. When the holey plate is locked, there is a space of 1 mm between

the two crenellated plates. Besides, the two crenellated plates can be fixed separately in

any wished angular position. Thus, any circular architectured membrane with different

crenels orientations can be molded. Once the injection is done, the mold filled out of

silicone is put at 70 ◦C for 4 hours into an oven to accelerate the vulcanization. Finally,

flat membranes ascribed of geometrical motifs (lattices of parallel crenels) on the upper

and lower external surfaces are obtained. Due to the geometry of the architectured mem-

branes, several coordinate systems have to be defined and are presented in Fig.5.1. Two

coordinate systems are defined for the two crenels layers. For the first crenel the basis de-

noted R1(E1,K1, z) is defined and for the second crenel the basis denoted R2(K2,E2, z).

The vector Ei corresponds to the crenel direction, Ki is an orthogonal vector in the plan

of the membrane, and z is orthogonal to the plan (x,y) of the membrane. It is to note

that the architectured membranes are characterized by the angle δ between the two lat-

tices of the crenels, thus δ is the angle defined by the orientation E1 and E2. Finally, a

global coordinate system is introduced R(x,y, z). The vector y matches the bisector of

the orientations of the crenels and x is an orthogonal vector in the plan of the membrane.

For the following the model is defined in the basis R of the architectured membrane.

δ 

Figure 5.1: Geometry of the architectured membrane, on the left the specimen is presented,
on the right the specimen is presented in a cut version to highlight the three layers
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In order to study the influence of the crenel orientations, five different circular architec-

tured membranes were molded with the same material and same processing. For each

architectured membrane, the only parameter that changes is the relative orientation δ

between the crenels, the geometry of the crenels stays the same. Finally, architectured

membranes with δ = 0◦, 45◦, 90◦, 135◦ and 180◦ are manufactured. Tensile rectangular

specimens were cut from the circular plate samples along the direction y (as illustrated in

Fig.5.1) i.e. along the bisector of the crenels orientations. The initial dimensions of the

tensile samples are L=60 mm long, l=21 mm width and e=1 mm thick for the core of the

membrane. The crenels on the external surfaces of the membrane are spaced out of 2 mm

and the width and thickness of each crenels are 1 mm (cf. Fig.5.1).

5.2.1.2 Experimental set up

For each architectured tensile test sample, a cyclic tensile test along the vector y (corre-

sponding to the bisector of the crenels orientations) was processed. By means of tension

device, the samples underwent a cyclic tensile test up at three different elongations λ,

where λ represents the current length of the sample over its initial length. The first load-

ing unloading cycle is reached at λ = 1.5, the second at λ = 2., and the third at λ = 2.5.

After these three cycles a reloading at λ = 2.5 is performed. The measurements are made

by means of a 100 N load cell which is synchronized to a Stereo-Dimensional Image Correla-

tion (SDIC) system. This technique enables to determine the 3D contour and the in-plane

strain fields of the object surface. Then the strain fields of the architectured membrane

can be studied at any point of the surfaces. The specimens present a periodic structure

which has to be repeat at least seven times in the width of the specimen to consider a

continuum model. Due to the crenel orientations, the section of the specimens is different

for each membrane. Thus, it is proposed to analyze the results using the nominal tension

T to have a more realistic comparison for all the samples. The nominal tension is defined

as:

T =
F

l0
(5.1)

where F is the applied force and l0 the initial width.

5.2.1.3 Experimental results

The results of the tensile tests are presented in the Fig.5.2 for the five different orienta-

tions of crenels. Fig.5.2(a) presents the evolution of the transversal elongation λx during

the tensile test in the REV, which was measured by means of SDIC, in function of the

tensile elongation, i.e. λy. The solid line represents the theoretical transversal elongation

for a tensile test on an incompressible isotropic material and the dashed lines represent

the experimental transversal elongation for the membranes with different orientations δ.

For an orientation of δ = 0◦, the transversal elongation matches perfectly the mechanical

behavior of incompressible isotropic material, i.e. λx = 1√
λy

. For orientations of δ = 45◦

and δ = 90◦ the curves are overlapping and present a behavior very close to the theo-

retical behavior of an incompressible isotropic material but with little lower transversal

elongations. At the opposite, for δ = 135◦ and 180◦, the transversal elongations are largely

different from the incompressible isotropic material. Fig.5.2(b) illustrates the evolution

94



of the nominal tension in function of the tensile elongation. It is observed that the orien-

tation δ between the crenels strongly influences the tension in the membrane. The lower

orientation requires the higher tension to deform the architectured membrane. It is to

note that few differences are observed for δ = 135◦ and δ = 180◦. The same results were

observed by Meunier [2011] with an unfilled silicone rubber. Nevertheless, compared to

Meunier [2011], the bulk material presents phenomena as hysteresis and Mullins effect that

can also be observed for the crenelated membranes. As for the bulk material, it appears

that the Mullins effect is important and that in comparison the hysteresis is weaker.
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Figure 5.2: Evolution of the transversal elongation (a) and nominal tension (b) of the
architectured membrane for different crenel orientations δ = 0◦, 45◦, 90◦, 135◦ and 180◦

5.2.2 Architectured filled silicone membrane constitutive equati on

5.2.2.1 General form

Rubber like materials are described by means of a strain energy density W. It is proposed

to decompose the strain energy function as the sum of the strain energies of the core of

the membrane Wcore-membrane and of each crenel Wcrenel-1, Wcrenel-2 as:

W = Wcore-membrane + Wcrenel-1 + Wcrenel-2 + Wcoupling (5.2)

Another term Wcoupling is added in order to represent the strain energy density of coupling

between the crenels and the membrane. The strain energy densities should take into

account the observed phenomena during experimental tests. It is proposed in a first

approach to develop a constitutive equation taking into account only the hyperelasticity

and the stress softening of the architectured membrane.

5.2.2.2 Constitutive equation of the bulk material filled silicone rubber

The filled silicone rubber used in this study presents an induced anisotropy [Machado et al.,

2010, 2012b]. Rebouah et al. [2013] developed a constitutive equation written with strain

invariants to predict the behavior of this material. The strain energy density Wsilicone is

additively decomposed into two parts: one that represents the strain energy of the chains
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linked to other chains Wcc and another part that represents the strain energy of the chains

linked to filler Wcf , the total strain energy density is Wsilicone = Wcc + Wcf . Rebouah

et al. [2013] considered that Mullins effect is mainly due to the presence of fillers. Thus,

only Wcf is evolving with the stress softening. Wcf is represented by a microsphere model

that can record the deformation history of the material. The 42 spatial initial directions

A(i) proposed by Bazant and Oh [1986] are used. The dilatation in each direction are

defined by means of I4
(i)=A(i).CA(i) where C is the right Cauchy Green strain tensor,

defined as FFT , where F is the deformation gradient. The A(i) directions are transformed

in a(i) after a deformation by a(i) = FA(i). Finally, the general form of the strain energy

in an incompressible framework is:

Wsilicone = Wcc(I1, I2) +
42
∑

i=1

ω(i)F (i)W(i)
cf (I

(i)
4 ). (5.3)

where I1, I2 are the first and second strain invariants of the tensor C, ω(i) represents the

weight of each direction, F (i) is the Mullins effect evolution function. The Mooney [1940]

strain energy is chosen for Wcc and the strain energy of each chain W
(i)
cf is defined as:

W(i)
cf =

K

2
ln I

(i)
4 (I

(i)
4 − 1) (5.4)

where K is a material parameter. The form was modified compared to Rebouah et al.

[2013], as the bundle of RTV3428 material used in this paper presents less stress hardening.

The same evolution function as proposed by Rebouah et al. [2013] is used:

F (i) = 1 − η

√

I1max − I1

I1max − 3

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)(

I
(i)
4 max

I4 max

)4

(5.5)

where η is a material parameter, I1max, I4
(i)
max and I4max are respectively the maximum

values of I1, I4
(i) for direction i and I4

(i) for all directions i = 1...42. The evolution

function cannot be negative since it is considered that each chain can only endure tension

and no compression. The Cauchy stress tensor is then the sum of two terms:

σsilicone = σcc + σcf (5.6)

σcc is the part of the Cauchy stress that represents the chains linked to other chains and

σcf the part of the Cauchy stress that represents the chains linked to fillers. Finally the

stress is written as:

σsilicone = −pI + 2B
∂Wcc

∂I1
+ 2

(

I1B − B2
) ∂Wcc

∂I2
+

2
42
∑

i=1

ω(i)F (i) ∂Wcf

∂I
(i)
4

(i)

F(A(i) ⊗ A(i))FT
(5.7)

5.2.2.3 Strain energy of the core of the membrane

The core of the membrane is the central part of the architectured membrane and can be

described as the bulk material. Thus, this part of the structure is simply represented

by the constitutive equation given by Eq.5.7. The model is fitted on the bulk material.
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Fig.5.3 presents a comparison between the simulation of the model and a tensile cyclic

test performed on the filled silicone rubber. The model parameters are: C1 = 0.065 MPa,

C2 = 0.045 MPa, η = 9, K = 0.27 MPa. The first load is well described. Some little

errors are observed for the second loads but the fit is quite good.
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Figure 5.3: Comparison of the model and experimental data for the bulk material

5.2.2.4 Strain energy of the crenels

The crenels are processed with the same material as the core of the membrane, so the

mechanical characteristics are the same. During the deformation of the membrane, it is

considered that crenels are only submitted to tension-compression loading. It is estimated

that there is no flexion in the crenels so they are modeled as bars. To determine the stress

of each crenel, it is proposed to write the Eq.(5.7) in term of unidirectional components to

represent the uniaxial extension undergone by the crenels. That means that σcf should be

described only according to the elongation in the direction Ek, where k represents either

the crenel 1 or the crenel 2. Thus, the behavior of each crenel can be modeled only by

means of the fourth invariant I4
(k)
c corresponding to the direction Ek, I4

(k)
c is defined as

I
(k)
4c = Ek.CEk (5.8)

λEk
represents the elongation in the direction Ek. Thus the strain energy of each crenel

depends only on the fourth invariant:

Wcrenel-k = W(I4
(k)
c ) (5.9)

The loading state in the crenel can be expressed by the right Cauchy-Green strain tensor
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Figure 5.4: Representation of a eighth of the 42 directions of Bazant and Oh; replacement
of these directions by only one direction for tensile test adapted to one direction for the
crenel

Cc
(k) written in the basis Rk as:

C(k)
c =









λ2
Ek

0 0

0 1
λEk

0

0 0 1
λEk









Rk

(5.10)

As a consequence, the first and second invariants can be expressed in function of I4c
(k):

I
(k)
c1 = I

(k)
4c +

2
√

I
(k)
4c

(5.11)

I
(k)
c2 =

1

2

(

(I
(k)
c1 )2 −

(

(I
(k)
4c )2 +

2

I4c
(k)

))

(5.12)

The term σcf in Eq.(5.7) should be modified in order to be expressed only by means

of I4c
(k). The objective is to replace the 42 directions by 1 with a new weight ω

(i)
c as

illustrated in Fig.5.4. First, it is necessary to focus on the first loading curve where the

evolution functions F (i) do not evolve and stay equal to 1. To evaluate the new value of

ω
(i)
c noted ω̃ in the direction Ek a comparison of the stress σcf with 42 directions

σcf = 2
42
∑

i=1

ω(i)
c F (i) ∂Wcf

∂I4
FA(i) ⊗ A(i)FT . (5.13)

and with only the Ek direction is done.

σcf-crenel = 2ω̃F (k)
c

∂Wcfc

∂I
(k)
4c

FEk ⊗ EkFT (5.14)

This comparison allows to deduce the value of the weight for one direction. A value of

ω̃ = 0, 21 is obtained for the first loading curves to coincide as illustrated in Fig.5.5. The
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Figure 5.5: Cauchy stress for the directional part of the Cauchy stress with 1 direction for
ω̃ = 0.21 and χ = 0.5 or χ = 1, and with 42 directions

parameter used for the representation is K = 1.07 MPa but the value of ω̃ is independent

of K. In Eq.(5.14) Wcfc is the strain energy for only one direction, i.e. for a crenel, which

is identical as the strain energy of the core of the membrane given in Eq.(5.4).

For the second loading curves, the evolution function F (i) must be considered. It was

described as the product of three terms (cf Eq.(5.5)). The third term of the product is

useless since with only one direction I
(k)
4 max = I4 max, there is no influence of the other

directions on the considered one. In tension, the first invariant can be expressed by

means of the fourth invariant (cf. Eq.(5.11)), that means that I1c and I4c are no longer

independent variables. Thus the evolution function can only be expressed by way of I
(k)
4c

or I
(k)
1c . It is chosen to express it in function of I

(k)
4c . The evolution function is adapted as:

F (k)
c = 1 − ηχ

(

I
(k)
4c max − I

(k)
4c

I
(k)
4c max − 1

)2

(5.15)

A new parameter χ is introduced to represent the transformation of 42 directions to 1.

Fig.5.5 highlights the role of the intensity χ of the crenels evolution function for a value

of K = 1.07 MPa and η = 9. χ has an important role in the form of the second loading

curve. It must be a value of 0.5 to limit important slope discontinuities and to represent

a behavior closer to the microsphere formulation. As for ω̃, the determination of χ is

independent of the value of the material parameter K and η. Thus, the strain energy of

the crenel is defined as:

Wcrenel-k = Wcc(I4
(k)
c ) + ω̃F (k)

c Wcf (I4
(k)
c ) (5.16)
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Finally, the contribution of the crenel in the membrane stress is defined as:

σcrenel(k) =



2C1



I
(k)
4c − 1

√

I
(k)
4c



+ 2C2

(

√

I
(k)
4c − 1

I
(k)
4c

)

+ 2ω̃F ∂Wcf

∂I
(k)
4c



 e(k)
n ⊗ e(k)

n (5.17)

where e
(k)
n represents the normed instantaneous direction of the crenels such as e(k) = FEk

and e
(k)
n = e(k)/

∥

∥

∥e(k)
∥

∥

∥. To determine the tension, a parameter β must be introduced to

quantify the proportion of crenels. In fact the crenels have the same height as the core

of the membrane but also recover a third of the surface of the membrane (see section 2),

that means that β = 1
3 .

5.2.2.5 Coupling strain energy

It is proposed to develop this term to take into account the coupling effect between the

crenels and the core of the membrane. The coupling strain energy term has to take into

account the shear induced by the crenels on the external faces of the core of the membrane,

i.e. along the two directions E1 and E2. The coupling term can be taken into account in

different ways. Reese et al. [2001] developed a strain energy coupling between orthotropic

directions composed by the product of terms isotropic (i.e. I1) and anisotropic (here I
(1)
4c

and I
(2)
4c ). Natali et al. [2009], Göktepe et al. [2010] and Nerurkar et al. [2011] defined also

a constitutive equations by using two other invariants that take into account the shear

in the material to model living tissues as heart or annulus fibrosus of the intervertebral

disc. In each case, it is proposed to develop a coupling term by using the eighth and ninth

invariants. This approach is considered here:

Wcoupling = W(I8, I9) (5.18)

By adaptation of invariants developed by Spencer [1971], we used:

I8 =
1

2
(C : (E1 ⊗ E2) + C : (E2 ⊗ E1)) (5.19)

I9 = E1.E2 (5.20)

Finally a new strain energy density is proposed:

Wcoupling = C8(δ)

∫

ln(1 + abs |I8 − I9)| dI8 (5.21)

where C8(δ) represents a material parameter which depends on the orientation δ between

the crenels to be adapted to every membrane. It represents the torsion stiffness of the core

of the membrane according to the initial orientation of the crenels. The coupling Cauchy

stress is deduced:

σcoupling = C8(δ) ln(1 + |I8 − I9|)F(E1 ⊗ E2 + E2 ⊗ E1)FT (5.22)

A quadratic evolution of the parameter with the angle is chosen:

C8(δ) = aδ2 (5.23)

where a is a material parameter.
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5.2.3 Numerical study

The equivalent model, i.e. Eqs.(5.7)-(5.17)-(5.22), was implemented into a Finite Element

(FE) code (Abaqus 2002) via an UMAT. Details about implementation can be read in

Holzapfel [2000]; Federico et al. [2008] and Rebouah et al. [2013]. To validate the model,

it is proposed to compare FE simulations to the experimental data of the architectured

membranes. The equivalent model simplifies the FE calculus by not representing the

details of the geometry of the crenelated membrane. Indeed the crenels add a lot of

complexity and increase the number of needed elements in the meshes, so by means of the

equivalent model it is now possible to sketch a simple geometry (a rectangular plate) and

to deduce the behavior of real crenelated plate.

5.2.3.1 Validation of the model with experimental data without coupling

According to the experimental results presented in the first part, a comparison of the

analytical simulations of the equivalent model is realized for each angle δ=0◦, 45◦, 90◦, 135◦

and 180◦. The results are presented in Fig.5.6. The values of the mechanical parameters

used for the simulations are those of the bulk material and are the same as presented

in section (3.3). In a first approach, the coupling term is not taken into account. It

is observed that for δ = 0◦ and δ = 180◦ a good match between the model and the

experimental results is obtained. Nevertheless for every other values of δ the model does

not match perfectly with the experimental data, a little difference is observed for δ = 45◦

and δ = 135◦ and a more important difference is observed for δ = 90◦. These differences

can be explained by the shear stresses between the core of the membrane and the crenels

that were neglected in this first approach. As no angle variation are observed for 0 and

180◦, there is no shear stress. It explains why the comparison between experimental data

and analytical calculus are much better for these two orientations.

5.2.3.2 Validation of the model with experimental data with the coupling term

• Tensile tests

In this part, the coupling term is no longer neglected and the results of the analytical

simulation are compared to the experimental data as illustrated in Fig.5.7. The only

parameter fitted with the equivalent model is the parameter a for the quadratic function

(Eq.5.23) which describes the evolution of the coupling term with the angle, a value of

a = 0.028 MPa is obtained. It is observed that the use of the coupling term allows to have

a better matching with the experimental results for each orientation of the crenels. The

coupling term permits to take into account the amount of energy used to change the angle

between the two crenels. It is important to note that by taking into account the coupling

term, good comparison between experimental data and analytical results are obtained.

The coupling term is thus a very important term and should not be neglected.

• Bulge test

It is proposed to test the constitutive equation in a complex loading FE calculation.

A circular architectured membrane of 180 mm diameter with an orientation δ = 45◦ is
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Figure 5.6: Comparison of experimental tests and the model of architectured membranes
for different orientations of the crenels neglecting the shear between the crenels and the
core of the membrane

simulated for a numerical bulge test. An experimental cyclic bulge test is also performed

on this membrane. The strain state is controlled by pressure, thus the first cycle is reached

for a pressure p = 1.49 kPa, the second for p = 3.48 kPa, the third p = 5.31 kPa and

finally p = 7.31 kPa for the fourth loading. It is proposed to compare the results obtained

along a radius of the circular plate. This path is defined to take into account the different

biaxial loading states reached during a bulge test. As presented in Fig.5.8(a), the start

point is the center of the plate which is close to an equibiaxial point (the equibiaxial

point is only reached for an isotropic material) and the second point is at the fixing of

the plate, it corresponds to pure shear [Machado et al., 2012a]. Fig.5.8(b) represents the

biaxility ratio along the path, defined as µ = ln(λmin)/ln(λmax) (where λmin and λmax are

the minimum and maximum in-plane principal elongations) for a pressure level p=1.49

kPa. It is observed that the biaxiality ratio varies a lot between the two extremal loading

points. Thus, this test permits to verify the robustness of the model on very different

biaxial strain states. As observed in Fig.5.9, the logarithmic strain reached lasting the

bulge test are not very important. Due to the geometry of the sample, it is not possible to
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Figure 5.7: Comparison of experimental tests and the model of architectured membranes
for different orientations of the crenels with coupling

reach a more important deformation state. For higher deformation levels, the crenels of

the membranes do not allowed a 3D reconstruction of the image. Indeed, for high level of

deformation some areas of the sample are not observed by the two cameras of the SDIC

system, thus the reconstruction is impossible.

To highlight the stress softening, the mechanical behavior of the crenelated membrane

is studied for the same pressure level for the different cycles performed during the test.

Data were studied each time that the pressure level reached the values of 1.49 kPa and

3.48 kPa during the test as highlighted in Fig.5.10. The study of the different loads for

the first pressure level is denoted as Ca, and four different load histories are considered

(1Ca, 2Ca, 3Ca, 4Ca). In the same way, the study of the second pressure level is denoted

as Cb, in this case three different load histories are considered (1Cb, 2Cb, 3Cb,).

The results obtained for the first and the second pressure levels are illustrated and com-

pared to FE simulation in Fig.5.11. The figure highlights that the maximal in plane

elongation λmax and the minimal in plane elongation λmin are approximately the same

for the experimental results and for the FE simulations for the two pressure levels studied.
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Figure 5.8: (a) representation of the studied path on the bulge test [Machado et al., 2012b].
(b) Biaxility ratio along the path

(a)
(b)

Figure 5.9: Comparison of the maximal logarithmic strain field of (a) experimental tests
and (b) FE simulation with coupling for bulge test, δ=45◦.

Nevertheless, for a pressure level of 1.49 kPa (Ca), it is observed that λmax is more im-

portant for the fourth load (4Ca) than for the first load (1Ca), this is due to the Mullins

effect. For λmin the behavior is identical for the different loadings since the maximal

deformations are endured by direction 1 and thus the stress softening is more important

for this direction.

For a pressure level of 3.48 kPa (Cb), λmax is a few superior for the third cycle (3Cb) than

for the first loading (1Cb) and λmin is equal for the three different histories. As for the

previous pressure level this can be explained by the Mullins effect endured by the material.

Moreover, for these two pressure levels, it can be assumed that the direction of the material

in the third direction, i.e. along the thickness, is modified between the different loadings

(but it cannot be studied with SDIC measurements). Since the material is considered

incompressible, if the material does not endured deformation due to the Mullins effect
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Figure 5.10: Representation of the two pressure levels studied for the bulge test

along direction 2 it supposed that the third direction endured deformations to respect the

volume conservation. Nevertheless, all these simulations prove that the equivalent model

is able to well describe the strain states in a complex structure calculation i.e. for non

uniaxial loading states whereas the model was developed by means of uniaxial data.
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Figure 5.11: Comparison of experimental tests and FE simulation with coupling for bulge
test on a sample with an angle δ=45◦.

5.2.3.3 Discussion

About the model Two main points can be discuss, first an interpretation of the model

and then an extension of the model to soft tissue. First for this equivalent model, it is
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important to note that five different mechanical parameters exist. Four of them describe

the behavior of the bulk material, and are fitted on a classic tensile test sample. The fifth

parameter a of Eq.5.23 is the only one fitted on the crenellated membranes tensile tests.

Then, by means of a theoretical analysis the influence of each part of the constitutive

equation is evaluated for the different orientations of the crenels. The behaviors of the

core of the membrane, of the crenels and of the coupling term are presented in Fig.5.12.

For δ = 0◦, there is no coupling but the crenels represent 40% of the stress. For δ = 45◦,

there is an influence of each part of the constitutive equation, whereas for δ = 90◦, the

influence of the crenels becomes less important. For δ = 135◦, the influence of the crenels

becomes almost equal to zero and the coupling term tends to zero that means that the

crenels can quasi be neglected. Finally for δ = 180◦ it is observed that the crenels and

the coupling do not have any influence on the behavior of the crenelated membrane, the

core of the membrane endures all.
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Figure 5.12: Influence of each term of tension for different values of δ.

• Extension of the model
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As exposed in literature [Dunlop and Fratzl, 2013], it is to note that soft tissues can be

considered as architectured materials. The presence of collagen [Holzapfel, 2000], into the

matrix of the tissues creates an initial anisotropy in this natural material. The reinforce-

ment of fibers induces different anisotropic behavior which depends on the orientation

of the fibers. The equivalent model presented here can perfectly be adapted to soft tis-

sue. The reinforcement of fibers corresponds to the crenel and the core of the membrane

corresponds to the matrix. In an aim to create biomimetic membranes that can present

behavior similar to soft tissues, the use of crenelated membranes is extrapolated. Living

tissues are often characterized by a very different behavior into the two planar orthogonal

directions which correspond to the tensile direction x and y for crenelated membrane

(i.e. tension for δ and 180◦ − δ). In this way, Fig.5.13 presents some simulations for two

orientations of the crenels. The Fig.5.13(a) presents exactly the behavior of the developed

membranes (β = 1
3). The anisotropy already important presents a difference of stiffness

about 30%. Moreover, Fig.5.13(b) presents simulations for β = 2
3 , that means that the

thickness of the crenels is now of 2 mm. In this case, the difference of stiffness is about 2.

That means that it is possible to generate a membrane with two directions with very differ-

ent mechanical behaviors. In order to come closer from soft tissues it would be necessary

to use a silicone rubber that presents a more important strain hardening.
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Figure 5.13: Representation of the behavior of a crenelated membrane for different orien-
tation of the crenel for β = 1

3 (a) or for β = 2
3 (b).

5.2.4 Conclusion

Filled silicone crenelated membranes were molded for different orientations of the crenels.

According to literature, and previous works, an existing model of filled silicone rubber was

used. This model was adapted to the crenels and a coupling term was developed. Thus,

every parts of the crenelated membrane can be evaluated. The constitutive equation ob-

tained was implemented into a finite element code via an Umat. Several experimental

tests were performed to validate the model. It was proved that the coupling term could

not be neglected during cyclic tensile tests for different orientations of the crenels. Finally,

a bulge test was performed to test the robustness of the model. Even if the deformations
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reached are not very important for silicone rubber, it is observed that a good comparison

between FE simulation and experimental results is obtained. By means of the equivalent

model, complex structures can be easily simulated with one parameter more than the ma-

terial parameters of the bulk material. Finally, the crenellated architectured membranes

could be used in a biomimetic approach to be adapted to soft tissues.

5.3 Micro structural architectured membrane

This second section presents two microstructural architectured materials. The first ma-

terial used is a RTV3428 but the fabrication process was changed in order to create a

privileged direction of the macromolecular chains orientation. Thus, an initial anisotropy

is imposed to the material. As previously, the material presents a stress softening, an

induced anisotropy, a permanent set and hysteresis.

The second material used is a thermoplastic elastomer (TPE). This material was provided

by "Laboratoire de recherches et de contrôle du caoutchouc et des plastiques" (LRCCP),

its composition and process are few described in order to safeguard confidentiality of the

project. As for the RTV3428, stress softening, permanent set and hysteresis are experi-

mentally observed.

By means of the performed tests, a model is proposed to take into account all the non

linear phenomena associated to the materials. It is proposed to take into account the

hysteresis and the permanent set by means of viscoelastic constitutive equations and the

stress softening and induced anisotropy by means of the constitutive equation presented in

Chapter 2. Both are presenting a strong initial anisotropy, this typical material behavior

is taken into account by means of a micro spherical approach. First section describes

the elaboration of both materials and the mechanical tests carried out. Then a theoret-

ical section presents the constitutive equations developed and finally a comparison with

experimental data is done.

5.3.1 Materials and methods

5.3.1.1 RTV3428a

This section presents the first material used: a RTV3428 filled silicone. This silicone was

already highly used in this thesis work, and particularly in the section (5.2) for geometrical

architectured materials and Chapter 2. As previously observed by means of experimental

tests, this filled silicone is initially isotropic. It is proposed to modify its microstructure to

have an anisotropic behavior. To modify its behavior, the process to obtain a membrane

was changed, the different steps are described in Fig.5.14. It is recalled that to obtain

an isotropic RTV3428 membrane two components are mixed. The mixture is then put

into a vacuum pump and finally injected into a mold. The mold is then placed into a

oven for four hours at a temperature of 70◦C. But, here it is different, to obtain an

anisotropic membrane with the same material, the injected mold is put 22 minutes in

the oven at 70◦C. The vulcanization of the obtained membrane is not fully performed

after being remove from the mold, then the membrane is put into a clipping system that

imposed a tension deformation of approximately 60%. The system is put in the oven at a
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temperature of 150◦C for two hours. The new material obtained is denoted as RTV3428a

and represents the anisotropic membrane made of filled silicone rubber RTV3428. The

isotropic membranes are still denoted as RTV3428. The step 5 represented in Fig.5.14

V�����

A B

1. mixing two components

2. Vacuum

3. Injection moulding

4. 22 min at 70°C

Partielly 

vulcanizated 

membrane

l

L
L/l=1.6

5. Applied a deformation to the 

membrane

6. 2h  at 150°C

Fabrication of an 

initially anisotropic 

silicone 

membrane

Figure 5.14: Elaboration of the micro structural architectured membrane of filled silicone

is the step that permits to create a preferential orientation of the macromolecular chains

in the material. Since the membrane is put in the oven for a second vulcanization in

a deformed state, the chain directions stay as imposed by the system (in the tensile

direction).

5.3.1.2 TPE

As this material was provided by the LRCCP, the elaboration and the composition of

this material is confidential. Nevertheless, it is assumed that during the process of the

membrane elaboration a preferential direction is imposed to the chains by calendaring.
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5.3.1.3 Experimental tests

To highlight the mechanical behavior of the two materials, two typical tests were per-

formed. Each material is initially presented as a membrane as presented in Fig.5.15. The

RTV3428a membrane dimensions after the second vulcanization are 150mm long, 70mm

wide and 1.6mm thick, for the TPE the membrane dimensions are 150mm long, 100mm

wide and 2mm thick. For each material three oriented samples at 0◦, 45◦ and 90◦ are

cut in the middle of the membrane to avoid edge effects, considering that 0◦ matches

to the preferential direction imposed to the macromolecular chains for both processes as

illustrated in Fig.5.15.

RTV3428

150 mm

70 mm

1.6 mm

150 mm

2 mm

0°

45°

90°

Calendar 

direction

loading 

direction 

during the 

second 

vulcanization 

TPE

100 mm

0°

45°

90°

Figure 5.15: Representation of the membrane and the oriented samples for the RTV3428a
and the TPE materials

For the first test, each one of the oriented samples are submitted to a cyclic loading up

to λ = 1.5, then up to λ = 2 and finally up to λ = 2.5. Each cycle is repeated twice

before to reach a new strain state, this test is represented at the top of the Fig.5.16 and

Fig.5.17 and is carried out at a strain rate of α = 0.016s−1. The results obtained for both

materials are presented on the same figures.

Fig.5.16 highlights the mechanical behavior of the RTV3428a for the three oriented sam-

ples. It appears that the material presents a stress softening, a hysteretic behavior and a

permanent set. Furthermore, the results highlight that the elaborating process is efficient

to generate anisotropy in the RTV3428a. The sample cut at 0◦ (which is the same direc-

tion as the loading direction imposed during the second vulcanization) presents the most

important stress hardening. Then the sample cut at 45◦ presents less stress hardening and

finally the sample cut a 90◦ is the softest. A multiplicative factor of approximately 1.3 is

calculated according to the maximal stress reached between the sample cut at 0◦ and the

one cut at 90◦. This proves that the second vulcanization undergone by the membrane

modified the micro-structure of this filled silicone. As the test was performed at a high

strain rate, it appears that the material presents a permanent set (at the unloading and

re-loading), whereas it was not observed in the previous studies on the RTV3428 at slower

strain rates.
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Figure 5.16: Cyclic tensile test performed on the RTV3428a architectured membrane
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Figure 5.17: Cyclic tensile test performed on the micro architectured membrane of TPE
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Similar results are obtained for the TPE in Fig.5.17, the same phenomena observed for

the RTV3428a are also observed for the TPE. Indeed, stress softening, hysteretic behavior,

permanent set and initial anisotropy are also observed. Unlike for the RTV3428a, all these

effects are more important for the TPE. The stress softening observed is very important

as the permanent set which is approximately equal to a third of the imposed strain. In

the same way, the anisotropic factor, based on the maximal stress reached, obtained be-

tween the sample cut at 0◦ and the one cut at 90◦ is approximately of 1.5. This factor is

greater than the one obtained for the RTV3428a, it proves that the TPE presents a more

important initial anisotropy.

The second test performed is a cyclic tensile test where relaxation times are imposed

at different strain states during loadings and unloadings. As previously, three oriented

samples are cut in the micro architectured membranes of both materials. Each sample is

submitted to a load up to λ = 1.5 followed by a relaxation time of 30 minutes, then up to

λ = 2 followed by a relaxation time of 30 minutes and up to λ = 2.5, then an unload until

λ = 2 followed by a relaxation time of 30 minutes and then up to λ = 1.5 followed by a

relaxation time of 30 minutes and back to λ = 1. This cycle is repeated twice at a strain

rate of α = 0.016s−1. The obtained results and the imposed loading are represented in

Fig.5.18 for the RTV3428a and Fig.5.19 for the TPE.
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Figure 5.18: Cyclic tensile test with imposed relaxation time performed on the RTV3428a
membrane

For the RTV3428a, this test highlights that the material presents few viscous effects. The

stress softening is still the major non linear effect associated to the mechanical behavior.

Nevertheless, the test shows that the relaxation time imposed during the first loading lead

to an important decrease of the stress compared to the unloading and the second loading.

These results supposed that an important part of the relaxation of the first loading is due
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Figure 5.19: Cyclic tensile test with imposed relaxation time performed on the TPE

to the Mullins effect. The test highlights too that the material presents a weak hysteresis

for the second loading. In the same way there is very few permanent set observed, even

at a strain rate of α = 0.016s−1.

At the opposite, the TPE presents very important viscous effects. Relaxations are very

important for the first and second loadings. It is observed that for the second loading and

unloading, the stress relaxations are weaker at λ = 1.5 than at λ = 2, this is due to the

permanent set of the material which appears at 50% of global deformation, where the first

relaxation time is imposed. However, this material presents a weak hysteretic behavior,

indeed if equilibrium curves are considered, it appears that they would be identical for

the second unloading and the unloading, the relaxation point of the second loading and

the unloading reached the same stress state. The mechanical behavior observed for both

materials is identical for the three oriented samples. The initial anisotropy influences all

the non linear phenomena but the mechanical behavior is still similar.

5.3.2 Constitutive equations

This section aims to propose a constitutive equation that permits to take into account

the mechanical behavior of the architectured materials. The materials experimentally

studied have a homogeneous structure. No geometric assumptions are needed unlike it

was proposed for the crenelated membranes. As all non linear phenomena have already

been taken into account in the last chapters, the previous models based on micro spherical

approach are used to take into account the mechanical behavior of these architectured

materials.

In a first approach, the new constitutive equation proposed were built by using only simple
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strain energy. Indeed, the aim is first to take all the phenomena into account. In this

way, qualitative predictions are expected here, to permit a better understanding of the

functionality of the model, which can be divided in three parts.

First, the hyperelastic behavior is taken into account by means of a Neo Hookean model.

Then the second part described the visoelasticity by means of the simplest model proposed

Huber and Tsakmakis [2000], and finally the stress softening is taken into account by means

of the model proposed in Chapter 2. The determination of the total stress is identical as

the one presented in the last chapter in Eq.(4.20) for both studied materials:

σ =
42
∑

i

ω(i)

(

2C1

(

λ(i)2 − 1

λ(i)

)

+ 2C2

(

λ(i)
e

2 − 1

λ
(i)
e

)

+ 2λ(i)2F (i) ∂Wcf

∂I
(i)
4

(i)
)

a(i)
n ⊗ a(i)

n

(5.24)

To take into account the initial anisotropy of the materials, the parameters of the different

parts of the model are considered as dependent of the direction in the micro sphere. First,

the hyperelastic behavior is turned anisotropic by means of C1 which becomes different

for each direction of the micro sphere to become C1
(i). In the same way the material

parameter of the viscoelastic part represented by C2 becomes C2
(i). It is important to

note that the initial anisotropy can also be induced by means of the material parameter

η
(i)
0 used in the viscoelastic part to describe the evolution equation of λ

(i)
e in Eq.(4.22) as

λ̇
(i)
e = λe

(i) λ̇(i)

λ(i) − 4 C2

3η
(i)
0

(

λ
(i)
e

3
− 1

)

can also be considered as dependent of each direction.

For the stress softening part the equations presented in last chapters are used. For both

materials the same evolution function F (i) is used as presented is Eq.(2.3) such as:

F (i) = 1 − η(i)
m

√

I1max − I1

I1max − 3

(

I
(i)
4 max − I

(i)
4

I
(i)
4 max − 1

)(

I
(i)
4 max

I4 max

)4

(5.25)

Where the material parameter η
(i)
m can be considered as dependent of each direction to

induced initial anisotropy.

Due to the differences observed experimentally between both materials, the strain energy

used to describe the RTV3428a and the TPE are different.

• Indeed, for the the same strain energy as the one used for the RTV3428 in Chapter

2 is used: W(i)
cf = K(I

(i)
4 − 1)2, where K is a material parameter. To take into

account the initial anisotropy of the material a different value is assigned to K for

each direction and the following strain energy is used W(i)
cf = K(i)(I

(i)
4 − 1)2.

• For the TPE, which is a new studied material, the strain energy used is identical as

the one used in Chapter 3 in Eq.(3.2), and is defined as W(i)
cf = K(i)

2

∫

√

√

√

√

I
(i)
4 − 1

I
(i)
4

dI
(i)
4 .

As for the RTV3428a, K became K(i) to take into account the initial anisotropy.

Finally the stress endured by each direction for the two materials is:

σ =
42
∑

i

ω(i)



2C1
(i)
(

λ(i)2 − 1

λ(i)

)

+ 2C2
(i)

(

λ(i)
e

2 − 1

λ
(i)
e

)

+ 2λ(i)2F (i)
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(i)
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a(i)
n ⊗ a(i)

n

(5.26)
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To conclude, five parameters permit to handle the initial anisotropy, C1
(i) for the hypere-

lastic part, C2
(i) and η

(i)
0 for the viscoelastic part and K(i) and η

(i)
m for the stress softening

part.

5.3.3 Comparison with experimental data

5.3.3.1 RTV3428a

According to the constitutive equations defined previously a comparison is proposed with

the experimental data. To have good match, the parameters values are chosen according

to the experimental observations. First, the stress softening is considered as similar for

each oriented tensile test as illustrated in Fig.5.18, so the material parameter η
(i)
m is con-

sidered as identical for all the directions such as η
(i)
m = 4. In the same way, the material

parameter η
(i)
0 that takes into account the dependance of the behavior on the strain and

that permits to define the increase stiffness and the size of the hysteresis loop, is also

considered as similar for all directions. the value for this material parameter is equal to

η
(i)
0 = 200MPa.s−1.

The three other mechanical parameters are considered as dependent on the directions. By

means of the variation of the parameter C1
(i) for each direction the hyperelasticity is rep-

resented as initially anisotropic, in the same way the viscoelasticity is turned anisotropic

by means of the parameters C2
(i) that represent the additional stiffness reached at high

strain rate, and the parameters K(i) that represent the stiffness of the stress softening of

each direction, vary also according to the spatial repartition.

It was experimentally observed that the stress is maximal for the tension direction, and

at the opposite the orthogonal direction is less stressed. As all the phenomena are max-

imal for the tension direction, the material parameters for each direction are chosen to

be maximal in the tension direction (also the imposed direction during the process) and

minimal in the orthogonal direction. The variation of the mechanical parameters accord-

ing to the spatial repartition permits to increase or decrease the initial anisotropy of the

material. According to the representation of the spatial repartition of Bazant as repre-

sented in Fig.4.11, the closest directions of the micro sphere to the preferential direction

induced by the process (i.e. direction 1 in Fig.4.11) are the directions with the highest

material parameter values. A more important variation in the parameter is imposed for

the hyperalsatic and stress softening part than for the viscoelastic part. Indeed, only a

few anisotropy is observed for the viscoelastic behavior (Fig.5.18). This repartition for the

material parameters can be adjusted for any material. The proposed values were fitted to

propose one solution. Other distributions of the material parameters could be proposed,

for instance by considering that the material parameter η0 depends on each directions.

The materials parameter used in each direction are presented in the table.5.1.

Table 5.1: Material parameters for the RTV3428a

n◦ C1
(i) MPa C2

(i) MPa K(i) MPa

1 0.1900 0.350 0.360

2 0.1330 0.280 0.252

3 0.1330 0.280 0.252
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4 0.1615 0.280 0.306

5 0.1615 0.280 0.306

6 0.1615 0.280 0.306

7 0.1615 0.280 0.306

8 0.1235 0.315 0.144

9 0.1235 0.315 0.144

10 0.1615 0.210 0.216

11 0.1615 0.210 0.216

12 0.1615 0.210 0.216

13 0.1615 0.210 0.216

14 0.1615 0.210 0.216

15 0.1615 0.210 0.216

16 0.1615 0.210 0.216

17 0.1615 0.210 0.216

18 0.1710 0.315 0.324

19 0.1710 0.315 0.324

20 0.1710 0.315 0.324

21 0.1710 0.315 0.324

The results are presented in Fig.5.20 for the three oriented samples studied. It appears

that, even if the mechanical behavior is not perfectly represented, all the non linear phe-

nomena are described: the initial anisotropy, the stress softening and the viscous effects

are taken into account.

To have a better match with the experimental data it would be necessary to use a most

robust model. Particularly for the viscous effects, a non linear evolution equation would

be necessary. In the same way, a Neo Hookean model is not the most adapted to repre-

sent this typical mechanical behavior. The stress softening is not well described at large

deformations, a different evolution function should be used to represent the fast decrease

of the stress at large strain states. Nevertheless, even with this simple model, all the non

linear phenomena are described.

5.3.3.2 TPE

The constitutive equation proposed previously is also applied to the TPE. The determina-

tion of the material parameters is similar as the one proposed for the RTV3428a. In this

way, and based on the experimental observations, it was chosen to consider that the stress

softening of the material and the viscous effects endured by each directions are similar.

The material parameters η
(i)
0 = 500MPa.s−1, η

(i)
m = 8 are identical for each directions. The

initial anisotropy is induced by means of the material parameters C1
(i) for hyperelasticity,

C2
(i) for the viscoelasticity and K(i) for the Mullins effect. It is important to note that

for this material, the anisotropy is considered as important for the stress softening part

and for the hyperelastic part. The anisotropy of the viscoelastic part is less important

than for the two other parts as for the RTV3428a. As previously the material parameters

values depend on the spatial repartition of the directions proposed by Bazant in Fig.4.11.
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Figure 5.20: Comparison with the experimental data of cyclic tensile test on RTV3428 for
the different oriented samples

More the direction is close to the direction 1 more the value is important. The parameter

values are presented in the table.5.2 and the results are presented in Fig.5.21.

Table 5.2: material parameter TPE

n◦ C1
(i) MPa C2

(i) MPa K(i) MPa

1 1.20 1.900 4.80

2 0.48 0.570 1.92

3 0.48 0.570 1.92

4 0.96 1.235 3.84

5 0.96 1.235 3.84

6 0.96 1.235 3.84

7 0.96 1.235 3.84

8 0.48 0.570 1.92

9 0.48 0.570 1.92
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10 0.72 1.045 2.88

11 0.72 1.045 2.88

12 0.72 1.045 2.88

13 0.72 1.045 2.88

14 0.72 1.045 2.88

15 0.72 1.045 2.88

16 0.72 1.045 2.88

17 0.72 1.045 2.88

18 1.08 1.520 4.32

19 1.08 1.520 4.32

20 1.08 1.520 4.32

21 1.08 1.520 4.32

For this material, the comparison with the experimental data is not well described.

This is partially due to the non linear phenomena which are very important for this mate-

rial compared to the RTV3428a and due to the limits of00 the present model. The initial

anisotropy that represents the hardening of the material is well described for the three

oriented samples compared to the stress softening which is very important and the vis-

cous effects that imposed too much permanent set to be properly described. Nevertheless,

the proposed model is a first approach and all the phenomena are qualitatively described.

The limits are well highlighted too, and the results permit to define a new way for the

development of an efficient model.

5.3.4 Discussion

This section presented two different materials initially anisotropic by means of a micro-

structural architecture issued from two different processes. Both materials present non

linear phenomena as initially anisotropy, stress softening, and viscous effects. It appears

that with simple linear constitutive equations these non linear phenomena can be qualita-

tively described by the proposed model but a perfect match cannot be obtained, particu-

larly if the non linear phenomena are very important. Indeed, a most robust constitutive

equation for hyperelasticity, stress softening and viscous effects should be used. Non linear

law are needed to represent the highly non linear mechanical behavior of these materials.

For instance the Bergstrom and Boyce [1998] model to take into account the viscous effect

is more efficient than the Huber and Tsakmakis [2000] model as illustrated in Chapter 4.
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Figure 5.21: Comparison with the experimental data of cyclic tensile test on TPE for the
different oriented samples

5.4 General conclusion

This chapter presented a study of architectured materials. These materials are more and

more used due to their particular mechanical properties. Two types of architectured ma-

terial were presented, first a geometrically architectured one and then a micro structural

architectured one. The geometrically architectured material was obtained by injection

molding and a control of the initial anisotropy is induced by means of oriented crenels on

the external surfaces of the central membrane. The main advantage of this material is

that the bulk material is isotropic, thus even if initially anisotropy is induced by means

of the geometry the material parameters are identical on all the sample, the anisotropy

is controlled by means of geometrical parameters. Furthermore all the other non linear

phenomena as stress softening or permanent set are similar in the membrane and in the

crenels. The assumption of tension compression was made for the crenels, and good ap-

proximation with experimental data was obtained with the use of a coupling term. Only

119



one mechanical parameter is added to the constitutive equation compared to the constitu-

tive equation of the bulk material. Furthermore an equivalent constitutive equation was

proposed and implemented into a FE code via UMAT. Validation for complex loading was

obtained between an experimental and a numerical bulge test.

Then, two micro mechanical architectured materials were obtained in two different ways.

First, the RTV3428 is turned anisotropic by means of a second vulcanization by applying

a deformation state and is called RTV3428a, and a TPE is initially anisotropic by means

of another process. In both cases an orientation of the chains is imposed to the material

to create a micro structural architecture. Those materials present stress softening, initial

anisotropy and for these two specific materials the viscous effects are no longer neglected.

The hysteretic behavior and the permanent set are taken into account, even if for the

RTV3428a the effects are weak. It appears that the proposed constitutive equation can

qualitatively describe all the non linear phenomena. The constitutive equations are not

able to described well the mechanical behavior. Most robust laws are required to take well

into account such mechanical behavior.

The two proposed model are based on two different modeling approaches. In the case of

the architectured membrane, a matrix is considered isotropic and 42 identical directions

are used for the 3D homogeneization. Moreover, the two reinforced directions (crenels)

induced the anisotropy of the material. Two other directions are added in the modeling,

it is considered that both directions have the same mechanical behavior. This approach

is close to the experimental observations and hypothesis applied to soft tissues. For ex-

ample, in arteries or esophageal tissues, an extra cellular matrix (isotropic) which contain

oriented fibers (collagen).

The second approach permits to consider a homogeneous material, but the modeling ap-

proach is different. By considering a homogenization with the 42 directions of Bazant

and Oh [1986], it is assumed that all the directions can be different, in this way an initial

anisotropy is induced to the material by considering that the mechanical properties of

each directions are different
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General conclusion

Conclusions

This thesis work presented a study mainly lead on rubber like materials. Experimental

tests were performed on different rubber like materials such as: filled silicone rubber

(RTV3428), Hot Temperature Vulcanization filled rubber (HTV), Nitril Butadien Rubber

(NBR) and ThermoPlastic Elastomers (TPE). Each one of these materials presents a

different mechanical behavior, and permits to focus on one particular phenomenon as

stress softening, induced anisotropy, permanent set and viscous effects. In this way, a

model was built step by step by adding gradually non linear phenomena.

First, only the stress softening and the induced anisotropy were taken into account. The

proposed model permit to take into account simultaneously the global and the directional

maximal deformation endured by the material during loadings by means of the micro

spherical approach. Then the permanent set was added to the model without adding

new material parameters. It involves that the stress softening and the permanent set of a

material are dependent. Comparisons of these tests with experimental data performed on

a HTV were proposed. Thereafter, an extension to soft tissues was proposed by taking into

account the initial anisotropy. The model, able to described stress softening, permanent set

and initial anisotropy, was validated on experimental tests performed on ovine vena cava.

These data were issue from literature Peña et al. [2009]. These models were implemented

in a FE code by means of a strain invariant formulation. The robustness of the model

was validated on complex structures or complex loading such as an holey plate or a bulge

test.

Next, the time dependency of the material was then analyzed. In this way, classical

viscoelastic models were studied and adapted to a micro spherical approach. One simple

Internal Variable Model (IVM) and one simple Convolution Integral Model (CIM) were

used in a first approach to highlight that a micro sphere approach permits to improve the

classical formulation. Numerical tests highlighted that by means of the micro spherical

approach, classical mechanical tests such as equibiaxial and pure shear tests can be well

taken into account with this approach.

Experimental tests were carried out on a NBR to study the influence of the viscous effects,
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and four preexistent models (only the IVM approach was used), issue from literature, were

extended to a micro spherical approach. The stress softening was added to the modeling

and the ability of the models were validated on experimental data. It appears that simple

linear evolution equations permit to qualitatively describe the experimental data, even if

the non linear evolution equation permits to have better matches.

Finally, architectured materials were used to develop a way to take into account and control

the initial anisotropy of the materials. In this way, geometrical and micro structural

architectured materials were used. For geometrical architectured materials, a crenellated

membrane with different orientations of the crenels was studied and an equivalent model

that takes into account geometrical parameters, stress softening, induced anisotropy and

initial anisotropy was proposed and implemented in a FE code. In the case of micro

structural architectured materials the viscoelasticity was added to the modeling. By means

of the micro spherical approach, the initial anisotropy of the material can be handled for

all non linear phenomena by applying a different value of the mechanical parameters

according to the considered direction. The model was validated on experimental data.

In a first approach simple laws were used to highlight qualitative comparisons, but more

complex models can be adapted to have a better comparison with experimental data.

Perspectives

New models and modeling principles were developed on rubber like materials, and can

be now easily extended to soft tissues. It would be, for instance, necessary to adapt the

different strain energies, but the structure of the model would not be changed. The main

advantage to have built the model on rubber like materials is that the model is now per-

fectly controlled.

Nevertheless, there exist still difficulties to properly determine the values of the mechani-

cal parameter especially to take well into account the anisotropic mechanical behavior of

materials. Another important perspective of this work is to carry out experimental tests

on soft tissues to test abilities of the models.

Another aim would be to implement the viscoelastic part of the model, in this way all the

phenomena could be anticipated and predicted. This model would be useful for rubber

like materials and soft tissues. The viscoelastic models proposed need to be improve to

have a good matches with experimental data. It would interesting to work on a new for-

mulation that would permit for instance to take into account simultaneously the different

size of hysteresis that could be observed on complex loading such as cyclic tensile test

with intern subloops.

Finally, all numerical tools, to propose new biomimetic materials, are available. By consid-

ering geometrical architectured materials, a numerical implementation of the equivalent

model is already efficient. It could be a good way to investigate optimized design for

prosthesis.

122



Appendix

A
The material directions construction

The proposed model uses n = 2 × 21 integration points with cartesian coordinates defined

in Table A.1. Only the 21st direction are summarized, the 21 others are their opposite.

The directions are represented on the unit sphere by the end point of each vector, the

origin being the point O for each vector. Some points are represented for a eighth of space

in Fig. A.1. The other directions are obtained by a symmetry with respect to the plan

(O, X1, X2); (O, X2, X3) et (O, X1, X3).

Table A.1: Direction cosines and weights for 2 × 21 points (orthonormal symmetries) of

each vector a
(i)
0 .

i direction X1 X2 X3 w
1 0 0 1 0.0265214244093
2 0 1 0 0.0265214244093
3 1 0 0 0.0265214244093
4 0 0.707106781187 0.707106781187 0.0199301476312
5 0 -0.707106781187 0.707106781187 0.0199301476312
6 0.707106781187 0 0.707106781187 0.0199301476312
7 -0.707106781187 0 0.707106781187 0.0199301476312
8 0.707106781187 0.707106781187 0 0.0199301476312
9 -0.707106781187 0.707106781187 0 0.0199301476312
10 0.836095596749 0.387907304067 0.387907304067 0.0250712367487
11 -0.836095596749 0.387907304067 0.387907304067 0.0250712367487
12 0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
13 -0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487
15 -0.387907304067 0.836095596749 0.387907304067 0.0250712367487
16 0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
17 -0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
18 0.387907304067 0.387907304067 0.836095596749 0.0250712367487
19 -0.387907304067 0.387907304067 0.836095596749 0.0250712367487
20 0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
21 -0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
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Figure A.1: The material directions construction. The set of direction a
(i)
0 is defined by

the polyhedron vertices.
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Appendix

B
Stress softening and Shear tests

This appendix presents an application of the model presented in Chapter 2 to take into

account the stress softening and the induced anisotropy for a simple shear test. In this

way, an experimental dual shear test was carried out on a Natural Rubber (NR) at the

Trellborg Company. This test is represented in Fig.B.1. The gradient of deformation F

h=16.5

l=20mm

e=

15mm

(a) (b)

Figure B.1: Quad shear test performed on a Natural Rubber (a) dimension and (b) picture.

and the stress tensor π for a shear test are given by:

F =









1 γ 0

0 1 0

0 0 1









(B.1)

π =









τx τxy 0

τyx τy

0 0 τz









(B.2)
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where γ represents the shear strain. It is known that the shear stress for a simple shear

test is given by:

τxy =
F/2

h.l
(B.3)

Where F is the applied force, h the height of the sample and l its length (as represented

in Fig.B.1). As presented in literature by Charlton et al. [1994]; Chagnon [2003], a simple

shear test is equivalent to pure shear test. In this way, the expression of the principal

elongation λ and of the stress for πps for the pure shear test can be deduced by means of

few calculation (eigenvalues and changed of framework) such as:

λ = 1 +
γ2

2
+ γ

√

1 +
γ2

4
(B.4)

τxy =
πps

2
√

1 + γ2

4

(B.5)

The comparison between the experimental data and the model is presented in Fig.B.2. It

appears that the model presented in Chapter 2 is also efficient to take into account a dual

shear test. The material parameter used for the modeling are: C1=0.6MPa, C2=0.5MPa,

K=1.3MPa, η=6.
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Figure B.2: Comparison of experimental data between the experimental test of quad shear
test (black line) equivalent to planar tension and a simulation of the model in planar
tension (red dotted line)
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